Home
Class 12
MATHS
Find the Range of function f(x) = [|si...

Find the Range of function
f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

A

{0}

B

`{0,1}`

C

`{1}`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \lfloor |\sin x| + |\cos x| \rfloor \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we can follow these steps: ### Step 1: Analyze the function \( |\sin x| + |\cos x| \) The first step is to understand the behavior of \( |\sin x| + |\cos x| \). Since both \( \sin x \) and \( \cos x \) oscillate between -1 and 1, their absolute values will oscillate between 0 and 1. Therefore, \( |\sin x| + |\cos x| \) will range from 0 to 2. ### Step 2: Determine the maximum value of \( |\sin x| + |\cos x| \) To find the maximum value of \( |\sin x| + |\cos x| \), we can use the Cauchy-Schwarz inequality or trigonometric identities. Using the identity: \[ |\sin x| + |\cos x| = \sqrt{(\sin^2 x + \cos^2 x) + 2|\sin x \cos x|} = \sqrt{1 + 2|\sin x \cos x|} \] The maximum value occurs when \( |\sin x \cos x| \) is maximized. The maximum value of \( |\sin x \cos x| \) is \( \frac{1}{2} \), which occurs at \( x = \frac{\pi}{4} + n\pi \) for integers \( n \). Thus, the maximum value of \( |\sin x| + |\cos x| \) is: \[ \sqrt{1 + 2 \cdot \frac{1}{2}} = \sqrt{2} \] ### Step 3: Find the range of \( |\sin x| + |\cos x| \) Now we need to find the minimum value of \( |\sin x| + |\cos x| \). The minimum occurs when either \( \sin x \) or \( \cos x \) is 0. For example, at \( x = 0 \) or \( x = \frac{\pi}{2} \), we have: \[ |\sin 0| + |\cos 0| = 0 + 1 = 1 \] \[ |\sin \frac{\pi}{2}| + |\cos \frac{\pi}{2}| = 1 + 0 = 1 \] Thus, the minimum value of \( |\sin x| + |\cos x| \) is 1. ### Step 4: Determine the range of \( f(x) \) Now we know that: - The minimum value of \( |\sin x| + |\cos x| \) is 1. - The maximum value of \( |\sin x| + |\cos x| \) is \( \sqrt{2} \). Since \( \sqrt{2} \) is approximately 1.414, the values of \( |\sin x| + |\cos x| \) will range from 1 to \( \sqrt{2} \). ### Step 5: Apply the greatest integer function Now, we apply the greatest integer function \( \lfloor . \rfloor \) to the range of \( |\sin x| + |\cos x| \): - The values of \( |\sin x| + |\cos x| \) range from 1 to \( \sqrt{2} \). - Therefore, \( \lfloor |\sin x| + |\cos x| \rfloor \) will take values from \( \lfloor 1 \rfloor \) to \( \lfloor \sqrt{2} \rfloor \). Since \( \lfloor \sqrt{2} \rfloor = 1 \), the only integer value that \( f(x) \) can take is 1. ### Conclusion Thus, the range of the function \( f(x) = \lfloor |\sin x| + |\cos x| \rfloor \) is: \[ \{1\} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

Find the range of the following function: f(x)=ln(x-[x]), where [.] denotes the greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

If f(x)=[2x], where [.] denotes the greatest integer function,then

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the period of the function [sin3x]+|cos6x|, where [.] denotes the greatest integer function.

MOTION-FUNCTION-Exercise - 3
  1. Find the Range of function f(x) = (x- [x])/(1 - [x] + x) , [.] = G.I...

    Text Solution

    |

  2. Find the Range of function f(x) = log(e) (3x^(2) - 4 x + 5) is :

    Text Solution

    |

  3. Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] de...

    Text Solution

    |

  4. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  5. Check whether pairs of function are identical or not ? f(x) = sec (...

    Text Solution

    |

  6. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  7. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  8. Mark the graph of the function f(x) = ||x| - 3|

    Text Solution

    |

  9. Draw the graph of the function: f(x)="sin"|x|

    Text Solution

    |

  10. Mark the graph of the function f(x) = [|x|]

    Text Solution

    |

  11. Mark the graph of the function f(x) = |{x}|

    Text Solution

    |

  12. Mark the graph of the function f(x) = 3 sin (X - (pi)/(3))

    Text Solution

    |

  13. Mark the graph of the function f (x) = (x^(8))/(x)

    Text Solution

    |

  14. Mark the graph of the function f(x) = x + sin x

    Text Solution

    |

  15. Mark the graph of the function f (x) = 3e^(x + 5) - 7

    Text Solution

    |

  16. Mark the graph of the function f(x) = |sin x| + |cos x|

    Text Solution

    |

  17. If f(x)=(4^(x))/(4^(x)+2), then show that f(x)+f(1-x)=1

    Text Solution

    |

  18. Solve the equation 2x+3[x]-4{-x}=4

    Text Solution

    |

  19. The set of real values of ‘x’ satisfying the equality [(3)/(x)] + [(4)...

    Text Solution

    |

  20. Find whether the following function are one-one or many -one & into or...

    Text Solution

    |