Home
Class 12
MATHS
The set of real values of ‘x’ satisfying...

The set of real values of ‘x’ satisfying the equality `[(3)/(x)] + [(4)/(x)] = 5` (where [ * ] denotes the greatest integer function) belongs to the interval `(a , (b)/(c ) ]` where `a , b , c in N` and `(b)/( c)` is in its lowest form . Find the value of a + b + c + abc .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left[\frac{3}{x}\right] + \left[\frac{4}{x}\right] = 5\), where \([\cdot]\) denotes the greatest integer function, we will analyze the values of \(x\) that satisfy this equation step by step. ### Step 1: Understanding the Equation The equation states that the sum of the greatest integer values of \(\frac{3}{x}\) and \(\frac{4}{x}\) equals 5. We can denote: - \(a = \left[\frac{3}{x}\right]\) - \(b = \left[\frac{4}{x}\right]\) Thus, we have \(a + b = 5\). ### Step 2: Finding Possible Values of \(a\) and \(b\) Since \(a\) and \(b\) are integers, the possible pairs \((a, b)\) that satisfy \(a + b = 5\) are: - \((0, 5)\) - \((1, 4)\) - \((2, 3)\) - \((3, 2)\) - \((4, 1)\) - \((5, 0)\) ### Step 3: Analyzing Each Case We will analyze each case to find the corresponding values of \(x\). **Case 1: \(a = 0, b = 5\)** - \(\left[\frac{3}{x}\right] = 0 \Rightarrow 0 \leq \frac{3}{x} < 1 \Rightarrow x > 3\) - \(\left[\frac{4}{x}\right] = 5 \Rightarrow 5 \leq \frac{4}{x} < 6 \Rightarrow \frac{4}{6} < x \leq \frac{4}{5} \Rightarrow \frac{2}{3} < x \leq \frac{4}{5}\) This case does not yield any valid \(x\) since \(x > 3\) contradicts \(x \leq \frac{4}{5}\). **Case 2: \(a = 1, b = 4\)** - \(\left[\frac{3}{x}\right] = 1 \Rightarrow 1 \leq \frac{3}{x} < 2 \Rightarrow \frac{3}{2} < x \leq 3\) - \(\left[\frac{4}{x}\right] = 4 \Rightarrow 4 \leq \frac{4}{x} < 5 \Rightarrow \frac{4}{5} < x \leq 1\) This case does not yield any valid \(x\) since \(\frac{3}{2} < x \leq 3\) contradicts \(x \leq 1\). **Case 3: \(a = 2, b = 3\)** - \(\left[\frac{3}{x}\right] = 2 \Rightarrow 2 \leq \frac{3}{x} < 3 \Rightarrow 1 < x \leq \frac{3}{2}\) - \(\left[\frac{4}{x}\right] = 3 \Rightarrow 3 \leq \frac{4}{x} < 4 \Rightarrow 1 < x \leq \frac{4}{3}\) The valid range for \(x\) is \(1 < x \leq \frac{3}{2}\) and \(1 < x \leq \frac{4}{3}\). The intersection is \(1 < x \leq \frac{4}{3}\). **Case 4: \(a = 3, b = 2\)** - \(\left[\frac{3}{x}\right] = 3 \Rightarrow 3 \leq \frac{3}{x} < 4 \Rightarrow \frac{3}{4} < x \leq 1\) - \(\left[\frac{4}{x}\right] = 2 \Rightarrow 2 \leq \frac{4}{x} < 3 \Rightarrow \frac{4}{3} < x \leq 2\) This case does not yield any valid \(x\) since \(\frac{3}{4} < x \leq 1\) contradicts \(x \geq \frac{4}{3}\). **Case 5: \(a = 4, b = 1\)** - \(\left[\frac{3}{x}\right] = 4 \Rightarrow 4 \leq \frac{3}{x} < 5 \Rightarrow \frac{3}{5} < x \leq \frac{3}{4}\) - \(\left[\frac{4}{x}\right] = 1 \Rightarrow 1 \leq \frac{4}{x} < 2 \Rightarrow 2 < x \leq 4\) This case does not yield any valid \(x\) since \(\frac{3}{5} < x \leq \frac{3}{4}\) contradicts \(x \geq 2\). **Case 6: \(a = 5, b = 0\)** - \(\left[\frac{3}{x}\right] = 5 \Rightarrow 5 \leq \frac{3}{x} < 6 \Rightarrow \frac{3}{6} < x \leq \frac{3}{5}\) - \(\left[\frac{4}{x}\right] = 0 \Rightarrow 0 \leq \frac{4}{x} < 1 \Rightarrow x > 4\) This case does not yield any valid \(x\) since \(x > 4\) contradicts \(x \leq \frac{3}{5}\). ### Step 4: Conclusion The only valid case is Case 3, which gives us the interval \( (1, \frac{4}{3}] \). ### Step 5: Identifying \(a\), \(b\), and \(c\) From the interval \( (1, \frac{4}{3}] \): - \(a = 1\) - \(b = 4\) - \(c = 3\) ### Step 6: Calculating \(a + b + c + abc\) Now, we calculate: \[ a + b + c + abc = 1 + 4 + 3 + (1 \cdot 4 \cdot 3) = 8 + 12 = 20 \] ### Final Answer The value of \(a + b + c + abc\) is \(20\).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

The set of real values of 'x' satisfying the equality [(3)/(x)]+[(4)/(x)]=5 belongs to the interval (a,(b)/(c)] where a,b,c in N and (b)/(c) is in its simpolest form.Find the value of a+b+c+abc (where [.] = G.IF)

If the set of values of x satisfying [x]>=1-x^(2) is (-oo,-sqrt(a)]uu[b,oo) (where [.] denotes greatest integer function) then find the value of (a+b)

The value of B=int_1^100 [sec^-1x]dx, (where [ . ] denotes greatest integer function), is equal to

(lim)_(xvec(-1^-)/3)1/x[(-1)/x]= (where [.] denotes the greatest integer function) a. -9 b. -12 c. -6 d. 0

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

Find the values of x graphically which satisfy, -1le[x]-x^(2)+4le2 , where [.] denotes the greatest integer function.

If lim_(x rarr1)(3-x+a[x-1]+b[x+1]) exists (where [ ] denotes the greatest integer function),then value of a + b

Total number of positive real value of x such that x,[x],(x) are H.P,where [.] denotes the greatest integer function and (.) denotes fraction part is equal To:

MOTION-FUNCTION-Exercise - 3
  1. If f(x)=(4^(x))/(4^(x)+2), then show that f(x)+f(1-x)=1

    Text Solution

    |

  2. Solve the equation 2x+3[x]-4{-x}=4

    Text Solution

    |

  3. The set of real values of ‘x’ satisfying the equality [(3)/(x)] + [(4)...

    Text Solution

    |

  4. Find whether the following function are one-one or many -one & into or...

    Text Solution

    |

  5. Find whether the following function are one-one or many -one & into or...

    Text Solution

    |

  6. Find whether the function are one–one or many–one f(x) = sin 4x , x...

    Text Solution

    |

  7. Find whether the following function are one-one or many -one & into or...

    Text Solution

    |

  8. Find whether the following functions are one-one or many-one f(x)=sqrt...

    Text Solution

    |

  9. Find whether the function are one–one or many–one f(x) = (3x^(2))/...

    Text Solution

    |

  10. Let f: D -> R, where D is its domain. Find whether the following funct...

    Text Solution

    |

  11. Let f: D -> R, where D is its domain. Find whether the following funct...

    Text Solution

    |

  12. Let f: D -> R, where D is its domain. Find whether the following funct...

    Text Solution

    |

  13. Let f: D -> R, where D is its domain. Find whether the following funct...

    Text Solution

    |

  14. Classify the following function f(x) defined in RtoR as injective, sur...

    Text Solution

    |

  15. Classify the following functions f(x) defined in R to R as injective ,...

    Text Solution

    |

  16. Classify the following function f(x) defined in RtoR as injective, sur...

    Text Solution

    |

  17. Q.16 Classify the following functions f(x) defined in RrarrR as inject...

    Text Solution

    |

  18. If f(x) = (x)/(sqrt(1+ x^(2))) , then (fof) (x) =

    Text Solution

    |

  19. Find whether the following functions are even or odd or none f(x) = l...

    Text Solution

    |

  20. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |