Home
Class 12
MATHS
Examine whether the function are even o...

Examine whether the function are even or odd or none.
`f(x) = ((1 + 2^(x))^(7))/(2^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \frac{(1 + 2^x)^7}{2^x} \) is even, odd, or neither, we will follow these steps: ### Step 1: Find \( f(-x) \) We start by substituting \(-x\) into the function: \[ f(-x) = \frac{(1 + 2^{-x})^7}{2^{-x}} \] ### Step 2: Simplify \( f(-x) \) Next, we simplify \( f(-x) \): \[ f(-x) = \frac{(1 + \frac{1}{2^x})^7}{\frac{1}{2^x}} = (1 + \frac{1}{2^x})^7 \cdot 2^x \] ### Step 3: Further simplify \( f(-x) \) Now, let's simplify \( (1 + \frac{1}{2^x})^7 \): \[ f(-x) = (1 + \frac{1}{2^x})^7 \cdot 2^x = \left( \frac{2^x + 1}{2^x} \right)^7 \cdot 2^x = \frac{(2^x + 1)^7}{(2^x)^7} \cdot 2^x \] This simplifies to: \[ f(-x) = \frac{(2^x + 1)^7}{2^{7x}} \cdot 2^x = \frac{(2^x + 1)^7}{2^{6x}} \] ### Step 4: Compare \( f(-x) \) with \( f(x) \) Now we will compare \( f(-x) \) with \( f(x) \): 1. We have \( f(x) = \frac{(1 + 2^x)^7}{2^x} \) 2. We have \( f(-x) = \frac{(2^x + 1)^7}{2^{6x}} \) Notice that \( (1 + 2^x)^7 = (2^x + 1)^7 \), so we can say: \[ f(-x) = \frac{(1 + 2^x)^7}{2^{6x}} \] ### Step 5: Determine if the function is even, odd, or neither Now we check the conditions for even and odd functions: - A function is **even** if \( f(-x) = f(x) \). - A function is **odd** if \( f(-x) = -f(x) \). From our calculations: 1. \( f(-x) = \frac{(1 + 2^x)^7}{2^{6x}} \) 2. \( f(x) = \frac{(1 + 2^x)^7}{2^x} \) Clearly, \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \). ### Conclusion Since neither condition for even or odd functions is satisfied, we conclude that the function \( f(x) \) is **neither even nor odd**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Examine whether the function are even or odd or none. f(x) = (x)/(e^(x) -1) + (x)/(2) + 1

Examine whether the function are even or odd or none. f(x) = (sec x + x^(2) -9)/(x sin x )

Determine whether the functions are even or odd f(x)=abs(x-2)

Determine whether the functions are even or odd f(x)=abs(-x)

Find whether the following functions are even or odd or none f(x)=log(x+sqrt(1+x^(2)))

State whether the following functions are odd or even. f(x) = (sin^(4)x)/([(x)/(2)]+(1)/(2)), x in (-2, 2)

Determine whether the following functions are even or odd or neither even nor odd: f(x)=(x^(2)-1)|x|

Determine whether the following functions are even or odd or neither even nor odd: sin(x^(2)+1)

Determine whether the following functions are even or odd or neither even nor odd: x+x^(2)

Examine whether the following function are even or odd or neither even nor odd, where [ ] denotes greatest integer function. f(x)=((1+2^(x))^(7))/(2^(x))