Home
Class 12
MATHS
Examine whether the function are even o...

Examine whether the function are even or odd or none.
`f(x) = (sec x + x^(2) -9)/(x sin x )`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \frac{\sec x + x^2 - 9}{x \sin x} \) is even, odd, or neither, we will follow these steps: ### Step 1: Define the function We have the function: \[ f(x) = \frac{\sec x + x^2 - 9}{x \sin x} \] ### Step 2: Find \( f(-x) \) To check if the function is even or odd, we need to compute \( f(-x) \): \[ f(-x) = \frac{\sec(-x) + (-x)^2 - 9}{(-x) \sin(-x)} \] ### Step 3: Simplify \( f(-x) \) Using the properties of trigonometric functions: - \( \sec(-x) = \sec x \) (since secant is an even function) - \( (-x)^2 = x^2 \) - \( \sin(-x) = -\sin x \) Substituting these into \( f(-x) \): \[ f(-x) = \frac{\sec x + x^2 - 9}{-x \sin x} \] This can be rewritten as: \[ f(-x) = -\frac{\sec x + x^2 - 9}{x \sin x} = -f(x) \] ### Step 4: Conclusion Since \( f(-x) = -f(x) \), the function \( f(x) \) is an **odd function**. ### Summary We have determined that the function \( f(x) = \frac{\sec x + x^2 - 9}{x \sin x} \) is an odd function. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Examine whether the function are even or odd or none. f(x) = ((1 + 2^(x))^(7))/(2^(x))

Examine whether the function are even or odd or none. f(x) = (x)/(e^(x) -1) + (x)/(2) + 1

Determine whether the functions are even or odd f(x)=abs(x-2)

Determine whether the functions are even or odd f(x)=abs(-x)

Find whether the following functions are even or odd or none f(x)=log(x+sqrt(1+x^(2)))

Determine whether the following functions are even or odd or neither even nor odd: f(x)=(x^(2)-1)|x|

Determine whether the following functions are even or odd or neither even nor odd: sin(x^(2)+1)

Determine whether the following functions are even or odd or neither even nor odd: x+x^(2)

Determine whether the following functions are even or odd or neither even nor odd: (i) tan x (ii) cos x (ii) sin (x^2 +1) (vi) (x) x a +1 (vii) f(x) log (x Nx2 +1) (viii) f(x) sin x cos x (ix) f(x)

Examine whether the function f given by f(x)= x^(3) is continuous at x =0