Home
Class 12
MATHS
If f(x) = [{:( x^(2) + sin x , 0 le x lt...

If f(x) = `[{:( x^(2) + sin x , 0 le x lt 1) , (x + e^(-x) , x ge 1):}` then extend the definition of f(x) for `x in (-oo , 0)` such that f(x) becomes
(a) An even function (b) An odd function

Text Solution

AI Generated Solution

The correct Answer is:
To extend the definition of the function \( f(x) \) for \( x \in (-\infty, 0) \) such that \( f(x) \) becomes: (a) An even function (b) An odd function Let's solve each case step by step. ### Part (a): Making \( f(x) \) an Even Function 1. **Definition of an Even Function**: A function \( f(x) \) is even if \( f(-x) = f(x) \) for all \( x \). 2. **Given Function**: \[ f(x) = \begin{cases} x^2 + \sin x & \text{for } 0 \leq x < 1 \\ x + e^{-x} & \text{for } x \geq 1 \end{cases} \] 3. **Finding \( f(-x) \)**: We need to define \( f(-x) \) for \( x \in (0, \infty) \): - For \( x \in (0, 1) \), \( -x \in (-1, 0) \). We can define \( f(-x) = x^2 + \sin(-x) = x^2 - \sin x \). - For \( x \geq 1 \), \( -x \leq -1 \). We can define \( f(-x) = -x + e^{x} \). 4. **Defining \( f(x) \) for \( x < 0 \)**: - For \( -x \in (-1, 0) \): \( f(x) = x^2 - \sin(-x) = x^2 + \sin x \). - For \( -x \leq -1 \): \( f(x) = -x + e^{x} \). 5. **Final Definition for Even Function**: \[ f(x) = \begin{cases} x^2 + \sin x & \text{for } x < 0 \\ x^2 + \sin x & \text{for } 0 \leq x < 1 \\ x + e^{-x} & \text{for } x \geq 1 \end{cases} \] ### Part (b): Making \( f(x) \) an Odd Function 1. **Definition of an Odd Function**: A function \( f(x) \) is odd if \( f(-x) = -f(x) \) for all \( x \). 2. **Finding \( f(-x) \)**: - For \( x \in (0, 1) \), \( -x \in (-1, 0) \). We define \( f(-x) = -\left(x^2 + \sin x\right) = -x^2 - \sin x \). - For \( x \geq 1 \), \( -x \leq -1 \). We define \( f(-x) = -\left(x + e^{-x}\right) = -x - e^{-x} \). 3. **Defining \( f(x) \) for \( x < 0 \)**: - For \( -x \in (-1, 0) \): \( f(x) = -x^2 - \sin(-x) = -x^2 + \sin x \). - For \( -x \leq -1 \): \( f(x) = -(-x) - e^{x} = x - e^{x} \). 4. **Final Definition for Odd Function**: \[ f(x) = \begin{cases} -x^2 - \sin x & \text{for } x < 0 \\ x^2 + \sin x & \text{for } 0 \leq x < 1 \\ x + e^{-x} & \text{for } x \geq 1 \end{cases} \] ### Summary of Definitions - For **Even Function**: \[ f(x) = \begin{cases} x^2 + \sin x & \text{for } x < 0 \\ x^2 + \sin x & \text{for } 0 \leq x < 1 \\ x + e^{-x} & \text{for } x \geq 1 \end{cases} \] - For **Odd Function**: \[ f(x) = \begin{cases} -x^2 - \sin x & \text{for } x < 0 \\ x^2 + \sin x & \text{for } 0 \leq x < 1 \\ x + e^{-x} & \text{for } x \geq 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x) is an odd function in R and f(x)={-x,0 then definition of f(x) in (-oo,0) is

If f(x)={:{(x", for " 0 le x lt 1),(2", for " x=1),(x+1", for " 1 lt x le 2):} , then f is

Let f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex le 0):} . If f(x) is an even function in R, then the defination of f(x) " in " (0, +oo) is :

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) x=0

Statement 1: If f(x) is an odd function,then f'(x) is an even function.Statement 2: If f'(x) is an even function,then f(x) is an odd function.

Let f(x) = {{:( x, if , x ge 1),( x^(2), if , x lt 1):} is f a continuous function ? Why ?

Let f(x) = x(2-x), 0 le x le 2 . If the definition of f(x) is extended over the set R-[0,2] by f (x+1)= f(x) , then f is a

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and g(x)=f'(x) is an even function , then f(x) is an odd function.

MOTION-FUNCTION-Exercise - 3
  1. Find out whether the given function is even, odd or neither even nor o...

    Text Solution

    |

  2. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  3. If f(x) = [{:( x^(2) + sin x , 0 le x lt 1) , (x + e^(-x) , x ge 1):} ...

    Text Solution

    |

  4. Prove that the function defined as, F(x) = {e^(-sqrt(|ln{x}|)) - {x}^(...

    Text Solution

    |

  5. Let a and b be real numbers and let f(x)=a sin x+b root(3)(x)+4,AA x i...

    Text Solution

    |

  6. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  7. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  8. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  9. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  10. Find the period of the function [sin 3x]+|cos 6x|, where [.] denotes t...

    Text Solution

    |

  11. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  12. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  13. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  14. 1-(sin^2x)/(1+cotx)-(cos^2x)/(1+tanx)=sinxcosx

    Text Solution

    |

  15. Find the period of the function f(x) = log (2 + cos 3x)

    Text Solution

    |

  16. Find the period of the function f(x) = tan""(pi)/(2) [x]. Where [*]...

    Text Solution

    |

  17. Find the period (if periodic) of the following function ([.] denotes ...

    Text Solution

    |

  18. Find the conjugate of 1/(3-5i)

    Text Solution

    |

  19. Find the period of f(x)=sinx+tanx/2+sinx/(2^2)+t a n x/(2^3)++sinx/(2^...

    Text Solution

    |

  20. Find the period of the function f(x) = (sin x + sin 3x)/(cos x + co...

    Text Solution

    |