Home
Class 12
MATHS
Find the period of the functions (where...

Find the period of the functions (where [ * ] denotes greatest integer function)
f(x) = `sin 3x + cos^(2) x + |tan x|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( f(x) = \sin(3x) + \cos^2(x) + |\tan(x)| \), we will analyze the period of each individual component of the function and then determine the overall period. ### Step-by-Step Solution: 1. **Identify the Period of Each Component:** - **For \( \sin(3x) \):** - The standard period of \( \sin(x) \) is \( 2\pi \). - For \( \sin(nx) \), the period is given by \( \frac{2\pi}{n} \). - Here, \( n = 3 \), so the period of \( \sin(3x) \) is: \[ \text{Period of } \sin(3x) = \frac{2\pi}{3} \] 2. **For \( \cos^2(x) \):** - The function \( \cos(x) \) has a period of \( 2\pi \). - However, \( \cos^2(x) \) can be expressed using the double angle formula: \[ \cos^2(x) = \frac{1 + \cos(2x)}{2} \] - The period of \( \cos(2x) \) is \( \frac{2\pi}{2} = \pi \). - Therefore, the period of \( \cos^2(x) \) is: \[ \text{Period of } \cos^2(x) = \pi \] 3. **For \( |\tan(x)| \):** - The function \( \tan(x) \) has a period of \( \pi \). - The absolute value function does not change the period of \( \tan(x) \). - Thus, the period of \( |\tan(x)| \) is: \[ \text{Period of } |\tan(x)| = \pi \] 4. **Determine the Overall Period:** - Now we have the periods of each component: - Period of \( \sin(3x) = \frac{2\pi}{3} \) - Period of \( \cos^2(x) = \pi \) - Period of \( |\tan(x)| = \pi \) - To find the overall period of the function \( f(x) \), we need to find the least common multiple (LCM) of the individual periods. - The periods are \( \frac{2\pi}{3} \) and \( \pi \). We can express \( \pi \) as \( \frac{3\pi}{3} \) for easier calculation. - Thus, we need to find: \[ \text{LCM}\left(\frac{2\pi}{3}, \frac{3\pi}{3}\right) \] - The LCM of the numerators \( 2\pi \) and \( 3\pi \) is \( 6\pi \), and the HCF of the denominators \( 3 \) and \( 3 \) is \( 3 \). - Therefore, the overall period is: \[ \text{Period of } f(x) = \frac{6\pi}{3} = 2\pi \] ### Final Answer: The period of the function \( f(x) = \sin(3x) + \cos^2(x) + |\tan(x)| \) is \( 2\pi \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = sec^(2) x + cosec^(3) x

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = 2 + 3 cos (x - 2)

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = (sin 12 x )/(2cos^(2) 6x-1)

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = (1)/( 1 - cos x )

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = cos"" (3)/(5) x - sin""(2)/(7) x .

Find the period of the functions (where [ * ] denotes greatest integer function) f(x) = sin"" (pi x)/(4) + sin""(pi x)/(3)

The period of 6x-[6x] is (where [ ] denotes the greatest integer function)

Find the period of the function [sin3x]+|cos6x|, where [.] denotes the greatest integer function.

Find the period of the function f(x) = tan""(pi)/(2) [x] . Where [*] denotes greatest integer function

The period of the function f(x)=sin(x+3-[x+3]) where [] denotes the greatest integer function

MOTION-FUNCTION-Exercise - 3
  1. Let a and b be real numbers and let f(x)=a sin x+b root(3)(x)+4,AA x i...

    Text Solution

    |

  2. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  3. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  4. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  5. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  6. Find the period of the function [sin 3x]+|cos 6x|, where [.] denotes t...

    Text Solution

    |

  7. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  8. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  9. Find the period of the functions (where [ * ] denotes greatest intege...

    Text Solution

    |

  10. 1-(sin^2x)/(1+cotx)-(cos^2x)/(1+tanx)=sinxcosx

    Text Solution

    |

  11. Find the period of the function f(x) = log (2 + cos 3x)

    Text Solution

    |

  12. Find the period of the function f(x) = tan""(pi)/(2) [x]. Where [*]...

    Text Solution

    |

  13. Find the period (if periodic) of the following function ([.] denotes ...

    Text Solution

    |

  14. Find the conjugate of 1/(3-5i)

    Text Solution

    |

  15. Find the period of f(x)=sinx+tanx/2+sinx/(2^2)+t a n x/(2^3)++sinx/(2^...

    Text Solution

    |

  16. Find the period of the function f(x) = (sin x + sin 3x)/(cos x + co...

    Text Solution

    |

  17. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  18. Solve the following problems from (i) to (v) on functional equation. (...

    Text Solution

    |

  19. A Function f is defined for all positive integers and satisfies f(1)=2...

    Text Solution

    |

  20. If a, b are positive real numbers such that a-b=2, then find the sma...

    Text Solution

    |