Home
Class 12
MATHS
Consider the function f(x) = {{:( x^(2) ...

Consider the function f(x) = `{{:( x^(2) - 1"," , -1 le x le 1) , ( lnx "," , 1 lt x le e):}`
Let `f_(1) (x) = f (|x|)`
`f_(2) (x) = |f(|x|)|`
`f_(3) (x) = f (-x)`
Now answer the question
Number of integral solution of the equation `f_(1) (x) = f_(2) (x) ` is (are )

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( f_1(x) = f_2(x) \), we first need to define the functions \( f_1(x) \) and \( f_2(x) \) based on the given function \( f(x) \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} x^2 - 1 & \text{for } -1 \leq x \leq 1 \\ \ln x & \text{for } 1 < x \leq e \end{cases} \] ### Step 2: Define \( f_1(x) \) The function \( f_1(x) = f(|x|) \) means we evaluate \( f \) at the absolute value of \( x \). Thus, we have: \[ f_1(x) = \begin{cases} x^2 - 1 & \text{for } 0 \leq |x| \leq 1 \\ \ln |x| & \text{for } 1 < |x| \leq e \end{cases} \] ### Step 3: Define \( f_2(x) \) The function \( f_2(x) = |f(|x|)| \) means we take the absolute value of \( f \) evaluated at the absolute value of \( x \). Thus, we have: \[ f_2(x) = \begin{cases} |x^2 - 1| & \text{for } 0 \leq |x| \leq 1 \\ |\ln |x|| & \text{for } 1 < |x| \leq e \end{cases} \] ### Step 4: Analyze \( f_1(x) \) and \( f_2(x) \) 1. **For \( 0 \leq |x| \leq 1 \)**: - \( f_1(x) = x^2 - 1 \) - \( f_2(x) = |x^2 - 1| \) - Since \( x^2 - 1 \) is negative in this interval, \( f_2(x) = 1 - x^2 \). Therefore, in this interval: \[ f_1(x) = x^2 - 1 \quad \text{and} \quad f_2(x) = 1 - x^2 \] Setting them equal gives: \[ x^2 - 1 = 1 - x^2 \implies 2x^2 = 2 \implies x^2 = 1 \implies x = \pm 1 \] 2. **For \( 1 < |x| \leq e \)**: - \( f_1(x) = \ln |x| \) - \( f_2(x) = |\ln |x|| = \ln |x| \) (since \(|x|\) is positive in this range). Therefore, in this interval: \[ f_1(x) = \ln |x| \quad \text{and} \quad f_2(x) = \ln |x| \] Setting them equal gives: \[ \ln |x| = \ln |x| \quad \text{(always true)} \] This means any \( x \) in the interval \( (1, e] \) satisfies this equation. ### Step 5: Count the integral solutions - From the interval \( 0 \leq |x| \leq 1 \), we found the solutions \( x = 1 \) and \( x = -1 \). - From the interval \( 1 < |x| \leq e \), the integral solutions are \( x = 2, 3, 4, 5 \) (as \( e \approx 2.718 \), we consider integers 2). Thus, the total integral solutions are: - From \( 0 \leq |x| \leq 1 \): \( 2 \) solutions (\( x = 1, -1 \)) - From \( 1 < |x| \leq e \): \( 1 \) solution (\( x = 2 \)) ### Final Count Total integral solutions = \( 2 + 1 = 3 \). ### Conclusion The number of integral solutions of the equation \( f_1(x) = f_2(x) \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If function f(x) = x-|x-x^(2)|, -1 le x le 1 then f is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

Let f(x)=2x+1. AA x , then the solution of the equation f(x)=f^(-1)(x) is

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

MOTION-FUNCTION-Exercise - 3
  1. Find the period of the function f(x) = tan""(pi)/(2) [x]. Where [*]...

    Text Solution

    |

  2. Find the period (if periodic) of the following function ([.] denotes ...

    Text Solution

    |

  3. Find the conjugate of 1/(3-5i)

    Text Solution

    |

  4. Find the period of f(x)=sinx+tanx/2+sinx/(2^2)+t a n x/(2^3)++sinx/(2^...

    Text Solution

    |

  5. Find the period of the function f(x) = (sin x + sin 3x)/(cos x + co...

    Text Solution

    |

  6. A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1...

    Text Solution

    |

  7. Solve the following problems from (i) to (v) on functional equation. (...

    Text Solution

    |

  8. A Function f is defined for all positive integers and satisfies f(1)=2...

    Text Solution

    |

  9. If a, b are positive real numbers such that a-b=2, then find the sma...

    Text Solution

    |

  10. Let f(x)=x^2+kx;k is a real number. The set of values of k for which t...

    Text Solution

    |

  11. Let P(x) is a six degree polynomial with leading coefficient 1 or in o...

    Text Solution

    |

  12. Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

    Text Solution

    |

  13. Computer the inverse of the function : f (x) = (1+x)/(1-x)

    Text Solution

    |

  14. Computer the inverse of the function : y = (10^(x) - 1)/(10^(x) + 1...

    Text Solution

    |

  15. If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x)...

    Text Solution

    |

  16. If {{:(2+x",", x ge0),(4-x",", x lt 0):}, a then f (f(x)) is given by ...

    Text Solution

    |

  17. Consider the function f(x) = {{:( x^(2) - 1"," , -1 le x le 1) , ( lnx...

    Text Solution

    |

  18. Consider the function f(x) = {{:( x^(2) - 1"," , -1 le x le 1) , ( lnx...

    Text Solution

    |

  19. Consider the function f(x) = {{:( x^(2) - 1"," , -1 le x le 1) , ( lnx...

    Text Solution

    |

  20. The graph of the function y = f(x) is as follows. Match the funct...

    Text Solution

    |