Home
Class 12
MATHS
Let a, b, c in R. If f (x) = ax^(2) + bx...

Let a, b, `c in R`. If `f (x) = ax^(2) + bx + c` is such that `a + b + c = 3 and f(x + y) = f(x) + f(y) + xy, AA x, y in R, " then " underset(n =1)overset(10)sum f (n)` is equal to

A

`(-1,0) cup (0 , 1)`

B

`(1 , 2)`

C

`(-2 , -1)`

D

`(-oo , -2) cup (2 , oo)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 3|119 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Let a, b, c in R . If f (x) = ax^(2) + bx + c is such that a + b + c = 3 and f(x + y) = f(x) + f(y) + xy, AA x, y in R, " then " sum_(n =1)^(10) f (n) is equal to

Let a,b,c in R. " If " f(x) =ax^(2)+bx+c be such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy, AA x,y in R, " then " sum_(n=1)^(10)f(n) is equal to

Let a,b,c in R. If f(x)=ax^(2)+bx+c is such that a +b+c=3. If f(x)=ax^(2)+bx+c is such f(x+y)=f(x)+f(y)+xy AA x,y in R then sum_(n=1)^(10)f(n) is equal to

If f (x) is a function such that f(x+y)=f(x)+f(y) and f(1)=7" then "underset(r=1)overset(n)sum f(r) is equal to :

Let a,b,cR .If f(x)=ax^(2)+bx+c is such that a+b+c=3 and f(x+y)=f(x)+f(y)+xy,AA x,yR, then sum_(n=1)^(10)f(n) is equal to 190(2)255(3)330(4) 165 165

Let a,b,c in R. If f(x)=ax^(2)+bx+c and a+b+c=3 and f(x+y)=f(x)+f(y)+xy then sum_(n=1)^(10)f(n) is

Let f(x) be a function such that f(x + y) = f(x)+f(y) AA x, y in N and f(1) = 4. If underset(k=1)overset(n) f (a+k) = 2n(33 + n) , then 'a' equals.......

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

Let f be a real valued function satisfying 2f(xy) = {f(x)}^(y) + {f(y)}^(x), AA x, y in R and f(1) = 2, then find underset(K = 1)overset(2008)sum f(K)