Home
Class 12
MATHS
Prove that 2sin^(-1)(3/5)=tan^(-1)((24)/...

Prove that `2sin^(-1)(3/5)=tan^(-1)((24)/1)`

Promotional Banner

Topper's Solved these Questions

  • MODEL QUESTION PAPER 1

    SUBHASH PUBLICATION|Exercise PART C|14 Videos
  • MODEL QUESTION PAPER 1

    SUBHASH PUBLICATION|Exercise PART D|9 Videos
  • MODEL QUESTION PAPER 1

    SUBHASH PUBLICATION|Exercise PART E|3 Videos
  • MOCK QUESTION PAPER -4

    SUBHASH PUBLICATION|Exercise Part-E|4 Videos
  • MODEL QUESTION PAPER 2

    SUBHASH PUBLICATION|Exercise PART E|3 Videos

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)((1)/(2))+ tan^(-1)((1)/(7))= tan^(-1)((31)/(17))

Prove that : 2tan^(-1)((3)/(4))-tan^(-1)((17)/(31))=(pi)/(4) .

sin ^(-1)((3)/(5))+tan ^(-1) (1)/(7)=

Prove that tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=(pi)/4

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))