Home
Class 9
MATHS
ABCD is a cyclic quadrilateral such that...

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and `angleADC=140^(@)," than "angleBAC ` is equal to

A

`80^(@)`

B

`50^(@)`

C

`40^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \angle BAC \) in the cyclic quadrilateral \( ABCD \) where \( AB \) is the diameter of the circle and \( \angle ADC = 140^\circ \). ### Step-by-Step Solution: 1. **Identify the Properties of the Cyclic Quadrilateral:** In a cyclic quadrilateral, the sum of the opposite angles is \( 180^\circ \). Therefore, we can write: \[ \angle ADC + \angle ABC = 180^\circ \] 2. **Substitute the Given Angle:** We know that \( \angle ADC = 140^\circ \). Substituting this value into the equation gives: \[ 140^\circ + \angle ABC = 180^\circ \] 3. **Solve for \( \angle ABC \):** Rearranging the equation to find \( \angle ABC \): \[ \angle ABC = 180^\circ - 140^\circ = 40^\circ \] 4. **Use the Property of Angles Subtended by the Diameter:** Since \( AB \) is the diameter of the circle, the angle subtended at the circumference by the diameter is a right angle. Therefore: \[ \angle ACB = 90^\circ \] 5. **Find \( \angle BAC \):** Now, we can find \( \angle BAC \) using the fact that the sum of angles in triangle \( ABC \) is \( 180^\circ \): \[ \angle BAC + \angle ABC + \angle ACB = 180^\circ \] Substituting the known angles: \[ \angle BAC + 40^\circ + 90^\circ = 180^\circ \] 6. **Solve for \( \angle BAC \):** Rearranging gives: \[ \angle BAC = 180^\circ - 40^\circ - 90^\circ = 50^\circ \] ### Final Answer: Thus, \( \angle BAC = 50^\circ \). ---

To solve the problem, we need to find the angle \( \angle BAC \) in the cyclic quadrilateral \( ABCD \) where \( AB \) is the diameter of the circle and \( \angle ADC = 140^\circ \). ### Step-by-Step Solution: 1. **Identify the Properties of the Cyclic Quadrilateral:** In a cyclic quadrilateral, the sum of the opposite angles is \( 180^\circ \). Therefore, we can write: \[ \angle ADC + \angle ABC = 180^\circ ...
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    NCERT EXEMPLAR|Exercise Exercise 10.4|2 Videos
  • Areas of Parallelograms and Triangles

    NCERT EXEMPLAR|Exercise Areas Of Parallelograms And Triangles|34 Videos
  • CONSTRUCTIONS

    NCERT EXEMPLAR|Exercise Long Answer Type Questions|5 Videos

Similar Questions

Explore conceptually related problems

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angleADC = 150^(@) . Then. angleBAC is equal to:

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC= 130^@ . Then angle BAC is equal to:

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC=158^@ . Then angle BAC is equal to : ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है और angle ADC=158^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 140^@ , angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 140^@ , है | कोण angle BAC किसके बराबर है?

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 125^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 125^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 144^@ . Then angle BAC is equal to: (pi=22/7) ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 144^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 148^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 148^@ , है | कोण angle BAC निम्नलिखित में से किसके बराबर होगा :

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angle ADC=129^@ . Then angle BAC is equal to: ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है तथा angle ADC=129^@ है | कोण BAC का मान ज्ञात करें |