In figure, `angleOAB=30^(@) and angleOCB=57^(@)." Find "angleBOC `
Text Solution
Verified by Experts
Given,`angleOAB=30^(@) and angleOCB=57^(@)` In `DeltaAOB, AO=OB` [both are the radius of a circle] `rArr angleOBA=angleBAO=30^(@)` [angles opposite to equal sides are equal] In`DeltaAOB`, `rArr angleAOB+angleOBA+angleBAO=180^(@)` [by angle sum property of a triangle] `:. angle AOB+30^(@)+30^(@)=180^(@)` `:. angleAOB=180^(@)-2(30^(@))` `=180^(@)-60^(@)=120^(@)` ...(i) Now, in `DeltaOCB`, OC=OB [both are the radius of a circle] `rArr angleOBC=angleOCB=57^(@)` [angle opposite to equal sides are equal] In `DeltaOCB`, `angleCOB+angleOCB+angleCBO=180^(@)` [by angle sum property of triangle] `:. angleCOB=180^(@)-(angleOCB+angleOBC)` `=180^(@)-(57^(@)+57^(@))` `=180^(@)-114^(@)=66^(@)` ...(ii) Form Eq. (i), `angleAOB=120^(@)` `rArr angleAOC+angleCOB=120^(@)` `rArr angleAOC+66^(@)=120^(@)` [from Eq. (ii)] `:. angleAOC=120^(@)-66^(@)=54^(@)`
Topper's Solved these Questions
CIRCLES
NCERT EXEMPLAR|Exercise Exercise 10.4|2 Videos
Areas of Parallelograms and Triangles
NCERT EXEMPLAR|Exercise Areas Of Parallelograms And Triangles|34 Videos
CONSTRUCTIONS
NCERT EXEMPLAR|Exercise Long Answer Type Questions|5 Videos
Similar Questions
Explore conceptually related problems
In the given figure, angleOAB=30^@ and angleOCB=57^@ Find angleBOC
In figure, angleACB=40^(@) ." Find "angleOAB .
In this figure angle DBC = 30^(@) and angle BCD = 110^(@) . Find angle BAC
In the figure, angle CAE = 30^(@) and angle AEB = 120^(@) . Find angle ADB
In the given figure, angleOAB=75^(@), angleOBA=55^(@) and angleOCD=100^(@) . Then, angleODC=?
In the given figure, angleOAB=110^@ and angleBCD=130^(@) then angleABC is equal to
In the following figure angleB=70^(@) and angleC=30^(@). BO and CO are the angle bisectors of angleABC and angleACB . Find the value of angleBOC :
In the figure below DeltaODC ~ DeltaOBA , angleBOC = 125^(@) and angleCDO = 70^(@) . Find angleDOC, angleDCO and angleOAB .
In the given figure, Delta OQP~ Delta OAB, angle OPQ =56^(@) and angle BOQ=132^(@) . Find angleOAB .
In the given figure, AOB is a straight line. If angleAOC=(3x+10)^(@) and angleBOC=(4x-26)^(@) , then angleBOC=?