Home
Class 9
MATHS
In figure, angleOAB=30^(@) and angleOCB=...

In figure, `angleOAB=30^(@) and angleOCB=57^(@)." Find "angleBOC `

Text Solution

Verified by Experts

Given,`angleOAB=30^(@) and angleOCB=57^(@)`
In `DeltaAOB, AO=OB` [both are the radius of a circle]
`rArr angleOBA=angleBAO=30^(@)`
[angles opposite to equal sides are equal]
In`DeltaAOB`,
`rArr angleAOB+angleOBA+angleBAO=180^(@)` [by angle sum property of a triangle]
`:. angle AOB+30^(@)+30^(@)=180^(@)`
`:. angleAOB=180^(@)-2(30^(@))`
`=180^(@)-60^(@)=120^(@)` ...(i)
Now, in `DeltaOCB`,
OC=OB [both are the radius of a circle]
`rArr angleOBC=angleOCB=57^(@)`
[angle opposite to equal sides are equal]
In `DeltaOCB`,
`angleCOB+angleOCB+angleCBO=180^(@)` [by angle sum property of triangle]
`:. angleCOB=180^(@)-(angleOCB+angleOBC)`
`=180^(@)-(57^(@)+57^(@))`
`=180^(@)-114^(@)=66^(@)` ...(ii)
Form Eq. (i), `angleAOB=120^(@)`
`rArr angleAOC+angleCOB=120^(@)`
`rArr angleAOC+66^(@)=120^(@)` [from Eq. (ii)]
`:. angleAOC=120^(@)-66^(@)=54^(@)`
Promotional Banner

Topper's Solved these Questions

  • CIRCLES

    NCERT EXEMPLAR|Exercise Exercise 10.4|2 Videos
  • Areas of Parallelograms and Triangles

    NCERT EXEMPLAR|Exercise Areas Of Parallelograms And Triangles|34 Videos
  • CONSTRUCTIONS

    NCERT EXEMPLAR|Exercise Long Answer Type Questions|5 Videos

Similar Questions

Explore conceptually related problems

In the given figure, angleOAB=30^@ and angleOCB=57^@ Find angleBOC

In figure, angleACB=40^(@) ." Find "angleOAB .

In this figure angle DBC = 30^(@) and angle BCD = 110^(@) . Find angle BAC

In the figure, angle CAE = 30^(@) and angle AEB = 120^(@) . Find angle ADB

In the given figure, angleOAB=75^(@), angleOBA=55^(@) and angleOCD=100^(@) . Then, angleODC=?

In the given figure, angleOAB=110^@ and angleBCD=130^(@) then angleABC is equal to

In the following figure angleB=70^(@) and angleC=30^(@). BO and CO are the angle bisectors of angleABC and angleACB . Find the value of angleBOC :

In the figure below DeltaODC ~ DeltaOBA , angleBOC = 125^(@) and angleCDO = 70^(@) . Find angleDOC, angleDCO and angleOAB .

In the given figure, Delta OQP~ Delta OAB, angle OPQ =56^(@) and angle BOQ=132^(@) . Find angleOAB .

In the given figure, AOB is a straight line. If angleAOC=(3x+10)^(@) and angleBOC=(4x-26)^(@) , then angleBOC=?