Given In a figure, two chords AB and CD intersecting each other at point E.
To prove `angleAEC=1/2`
[angle subtended by arc `C xx A` at centre + angle subtended by arc DYB at the centre]
Construction Extend the line DO and BO at the points l and H on the circle. Also, join AC.
Proof We know that, in a circle, the angle subtended by an arc at the centre is twice the angle subtended by it at the remaining part of the circle.
`:. angle1=2angle6 ` ...(i)
and ` angle3 = 2 angle7` ....(ii)
In ` DeltaAOC, OC=OA ` [ both are the radius of circle]
`angleOCA=angle4` [angles opposite to equal sides arc equal]
Also, ` angleOCA+angleOCA+angle4=180^(@)`
[by angle sum property of triangle]
` rArr angleAOC+angle4+angle4=180^(@)`
`rArr angleAOC=180^(@)-2angle4` ...(iii)
Now, in `DeltaAEC, angleAEC+angleECA+ angleCAE=180^(@)`
[by angle property sum of a triangle]
`rArr angleAEC=180^(@)-(angleECA+angleCAE)`
`rArr angleAEC=180^(@)-[(angleECO+angleOCA)+angleCAO+angleOAE]`
`=180^(@)-(angle6+angle4+angle4+angle5)`
[in `DeltaOCD, angle6=angleECO` angles opposite to equal sides are equal]
`=180^(@)-(2angle4+angle5+angle6)`
`=180^(@)-(180^(@)-angleAOC+angle7+angle6)`
[from Eq. (iii) and in `DeltaAOB, angle5=angle7`, as (angles opposite to equal sides are equal)]
`angleAOC-(angle3)/2-(angle1)/2` [from Eqs. (i) and (ii)]
`=angleAOC-(angle1)/2-(angle2)/2-(angle3)/2-(angle2)/2["adding and subtracting " (angle2)/2]`
`=angleAOC-1/2(angle1+angle2+angle3)+(angle8)/2[:' angle2=angle8" (vertically opposite angles)"]`
` =angleAOC-(angleAOC)/2+(angleDOB)/2`
`rArr angleAEC=1/2(angleAOC+angleDOB)`
`1/2` [angle subtended by arc CXA at the centre + angle subtended by arc DYB at the centre]