Home
Class 12
MATHS
Determine graphically the minimum value ...

Determine graphically the minimum value of the objective function`Z = - 50 x + 20 y` . . .(1)subject to the constraints:`2x-ygeq-5` . . .(2)`3x+ygeq3` . . .(3)`2x-3ylt=12` . . .(4)`xgeq0,ygeq0` . . .(5)

Text Solution

AI Generated Solution

To solve the linear programming problem graphically, we will follow these steps: ### Step 1: Identify the Objective Function and Constraints The objective function to minimize is: \[ Z = -50x + 20y \] The constraints are: 1. \( 2x - y \geq -5 \) (Constraint 1) 2. \( 3x + y \geq 3 \) (Constraint 2) ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR PROGRAMMING

    NCERT|Exercise EXERCISE 12.2|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos
  • MATRICES

    NCERT|Exercise EXERCISE 3.3|12 Videos

Similar Questions

Explore conceptually related problems

Determine graphically the minimum value of the objective function: Z = -50x + 20y subject to the constraints: 2x - y ge -5, 3x + y ge 3, 2x - 3y le 12, x, y ge 0 .

Determine graphically the minimum value of the objective function z = - 50x + 20 y, subject to he constraints. 2x - y ge - 5 3x + y ge 3 2x - 3y le 12 x ge 0, y ge 0

The maximum value of the objective function Z=3x+4y subject to the constraints x+y le 4, x ge 0 , y le o is

The minimum value of the objective function Z=x+2y Subject to the constraints, 2x+ y ge 3 , x +2y ge 6 , x, y ge 0 occurs

Minimise Z" "=" "3x" "+" "2y subject to the constraints: x+jgeq8 . . .(1) 3x+5ylt=15 . . .(2) xgeq0,""""ygeq0 . . .(3)

Solve the following problem graphically: Minimise and Maximise Z" "=" "3x" "+" "9y . . . (1) subject to the constraints: x+3ylt=60 . . . (2) x+ygeq10 . . . (3) xlt=y . . . (4) xgeq0,""""ygeq0 . . . (5)

Find the ratio of the maximum and minimum values of the objective function f=3x+5y subject to the constraints : x ge 0, y ge0, 2x+3y ge 6 and 9x+ 10y le 90 .

The maximum and minimum values of the objective function Z = x + 2y subject to the constraints x+2y ge 100, 2x -y le 0, 2x +y le 200 occurs respectively at

The minimum value of the objective function Z=2x+10y for linear constraints x ge 0 , y ge 0, x -y ge 0, x -5y le -5 is