Home
Class 11
MATHS
If msintheta=nsin(theta+2alpha), then pr...

If `msintheta=nsin(theta+2alpha)`, then prove that `tan(theta+alpha)cotalpha=`

A

`(m+n)/(2m)`

B

`(m-n)/(2n)`

C

`(m+n)/(m-n)`

D

`(m-n)/(m+n)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan(\theta + \alpha) \cdot \cot(\alpha) = \frac{M + N}{M - N} \) given that \( M \sin \theta = N \sin(\theta + 2\alpha) \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ M \sin \theta = N \sin(\theta + 2\alpha) \] ### Step 2: Rearranging the equation We can express \( \frac{M}{N} \) in terms of sine functions: \[ \frac{M}{N} = \frac{\sin(\theta + 2\alpha)}{\sin \theta} \] ### Step 3: Apply the component and dividend rule Using the component and dividend rule, we can rewrite the fraction: \[ \frac{M}{N} = \frac{\sin(\theta + 2\alpha) + \sin \theta}{\sin(\theta + 2\alpha) - \sin \theta} \] ### Step 4: Use the sine addition formulas Using the sine addition formula \( \sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \) and \( \sin A - \sin B = 2 \cos\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \): - Let \( A = \theta + 2\alpha \) and \( B = \theta \). We have: \[ \sin(\theta + 2\alpha) + \sin \theta = 2 \sin\left(\theta + \alpha\right) \cos(\alpha) \] and \[ \sin(\theta + 2\alpha) - \sin \theta = 2 \cos\left(\theta + \alpha\right) \sin(\alpha) \] ### Step 5: Substitute back into the equation Substituting these results back into our expression for \( \frac{M}{N} \): \[ \frac{M}{N} = \frac{2 \sin(\theta + \alpha) \cos(\alpha)}{2 \cos(\theta + \alpha) \sin(\alpha)} \] ### Step 6: Simplify the expression The 2's cancel out: \[ \frac{M}{N} = \frac{\sin(\theta + \alpha) \cos(\alpha)}{\cos(\theta + \alpha) \sin(\alpha)} \] This can be rewritten as: \[ \frac{M}{N} = \tan(\theta + \alpha) \cdot \cot(\alpha) \] ### Step 7: Conclude the proof Thus, we have shown that: \[ \tan(\theta + \alpha) \cdot \cot(\alpha) = \frac{M + N}{M - N} \] This completes the proof. ---

To prove that \( \tan(\theta + \alpha) \cdot \cot(\alpha) = \frac{M + N}{M - N} \) given that \( M \sin \theta = N \sin(\theta + 2\alpha) \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ M \sin \theta = N \sin(\theta + 2\alpha) \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If m sin theta=n sin(theta+2 alpha), prove that tan(theta+alpha)cot alpha=(m+n)/(m-n)

If sin theta=n sin(theta+2 alpha), prove that tan(theta+alpha)=(1+n)/(1-n)tan alpha

If sin theta=3sin(theta+2 alpha), then the value of tan(theta+alpha)+2tan alpha is

If m sin theta=n sin(theta+2 alpha), then tan(theta+alpha)=

If sin theta=k sin(theta+2 alpha) prove that tan(theta+alpha)=(1+k)/(1-k)tan alpha

If sintheta=3sin(theta+2alpha) , then tan(theta+alpha)+2tanalpha=?

If sin theta =3 sin ( theta + 2 alpha), then the value of tan (theta + alpha) + 2 tan alpha is

If sin(theta+alpha)=cos(theta+alpha) then the value of tan theta is

If cos theta=cos alpha cos beta, prove that tan(theta+alpha)/(2)tan(theta-alpha)/(2)=tan^(2)(beta)/(2)