Home
Class 11
MATHS
If f(x)=cos^(2)x+sec^(2)x, then...

If `f(x)=cos^(2)x+sec^(2)x`, then

A

f(x) `lt`1

B

f(x) = 1

C

2`lt`f(x)`lt`1

D

f(x)`ge`2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \cos^2 x + \sec^2 x \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \cos^2 x + \sec^2 x \] We know that \( \sec^2 x = \frac{1}{\cos^2 x} \). Therefore, we can rewrite \( f(x) \) as: \[ f(x) = \cos^2 x + \frac{1}{\cos^2 x} \] ### Step 2: Set \( y = \cos^2 x \) Let \( y = \cos^2 x \). Then, we can express \( f(x) \) in terms of \( y \): \[ f(x) = y + \frac{1}{y} \] ### Step 3: Find the minimum value of \( f(x) \) To find the minimum value of \( f(x) \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality, which states that for any positive numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Applying this to our function: \[ \frac{y + \frac{1}{y}}{2} \geq \sqrt{y \cdot \frac{1}{y}} = \sqrt{1} = 1 \] Multiplying both sides by 2 gives: \[ y + \frac{1}{y} \geq 2 \] Thus, we have: \[ f(x) \geq 2 \] ### Step 4: Conclusion The minimum value of \( f(x) \) occurs when \( y = 1 \) (which happens when \( \cos^2 x = 1 \), or \( x = n\pi \) for any integer \( n \)). Therefore, we conclude that: \[ f(x) \geq 2 \] ### Final Answer The minimum value of \( f(x) \) is \( 2 \). ---

To solve the problem where \( f(x) = \cos^2 x + \sec^2 x \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \cos^2 x + \sec^2 x \] We know that \( \sec^2 x = \frac{1}{\cos^2 x} \). Therefore, we can rewrite \( f(x) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(2)x+sec^(2)x. Then minimum value of f(x) is _(-)

If f(x)=cos^(2)theta+sec^(2)theta, then f(x) f(x)>1( d) f(x)>=2

If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points in

Find the range of f(x)=cos^2x+sec^2x .

Given f(0)=0;f'(0)=0 and f''(x)=sec^(2)x+sec^(2)x tan^(2)x+ then f(x)=

Let f(x)=det[[sec^(2)x,1,1cos^(2)x,cos^(2)x,cos ec^(2)x1,cos^(2)x,cot^(2)x]], then

Range of f(x)=sec^(2)x+4cos ec^(2)x

Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cosec^(2)x),(1,cos^(2)x,cos^(2)x):}| then find the value of f_(0)^(pi//2) f(x) dx.