Home
Class 11
MATHS
The value of sin""(pi)/(10)sin""(13pi)/(...

The value of `sin""(pi)/(10)sin""(13pi)/(10)` is

A

`(1)/(2)`

B

`-(1)/(2)`

C

`-(1)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Rewrite \( \sin\left(\frac{13\pi}{10}\right) \) We can express \( \frac{13\pi}{10} \) as: \[ \frac{13\pi}{10} = \pi + \frac{3\pi}{10} \] Using the sine addition formula, we know: \[ \sin(\pi + \theta) = -\sin(\theta) \] Thus, \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] ### Step 2: Substitute into the original expression Now substituting this back into our expression, we have: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) \left(-\sin\left(\frac{3\pi}{10}\right)\right) \] This simplifies to: \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) \] ### Step 3: Use the product-to-sum identities We can use the product-to-sum identities: \[ \sin A \sin B = \frac{1}{2} \left[ \cos(A - B) - \cos(A + B) \right] \] Let \( A = \frac{\pi}{10} \) and \( B = \frac{3\pi}{10} \): \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{10} - \frac{3\pi}{10}\right) - \cos\left(\frac{\pi}{10} + \frac{3\pi}{10}\right) \right] \] Calculating \( A - B \) and \( A + B \): \[ A - B = \frac{\pi}{10} - \frac{3\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5} \] \[ A + B = \frac{\pi}{10} + \frac{3\pi}{10} = \frac{4\pi}{10} = \frac{2\pi}{5} \] Thus, we have: \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left[ \cos\left(-\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] Using the property \( \cos(-x) = \cos(x) \): \[ = -\frac{1}{2} \left[ \cos\left(\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right] \] ### Step 4: Evaluate the cosines We know from trigonometric identities: \[ \cos\left(\frac{\pi}{5}\right) = \frac{1 + \sqrt{5}}{4}, \quad \cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5} - 1}{4} \] Substituting these values: \[ = -\frac{1}{2} \left[ \frac{1 + \sqrt{5}}{4} - \frac{\sqrt{5} - 1}{4} \right] \] Simplifying: \[ = -\frac{1}{2} \left[ \frac{1 + \sqrt{5} - \sqrt{5} + 1}{4} \right] = -\frac{1}{2} \left[ \frac{2}{4} \right] = -\frac{1}{2} \cdot \frac{1}{2} = -\frac{1}{4} \] ### Final Answer Thus, the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \) is: \[ \boxed{-\frac{1}{4}} \]

To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Rewrite \( \sin\left(\frac{13\pi}{10}\right) \) We can express \( \frac{13\pi}{10} \) as: \[ \frac{13\pi}{10} = \pi + \frac{3\pi}{10} \] Using the sine addition formula, we know: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

The value of sin((pi)/(10))sin((13 pi)/(10)) is

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is

The value of sin""(pi)/(14).sin""(3pi)/(14).sin""(5pi)/(14).sin""(7pi)/(14).sin""(9pi)/(14).sin""(11pi)/(14).sin""(13pi)/(14) is

Find the value of (a) sin(pi)/(10).sin(13pi)/(10) (b) cos^(2)48^(@)-sin^(2) 12^(@)

sin((pi)/(10))sin((3pi)/(10))=?

The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

NCERT EXEMPLAR-TRIGONOMETRIC FUNCTIONS -OBJECTIVE TYPE QUESTIONS
  1. The minimum of 3cosx +4sin x+8 is

    Text Solution

    |

  2. tan 3A-tan 2A-tan A= is equal to

    Text Solution

    |

  3. The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

    Text Solution

    |

  4. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  5. cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

    Text Solution

    |

  6. The value of cos12^@+cos84^@+cos156^@+cos132^@ is

    Text Solution

    |

  7. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  8. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  9. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  10. If sintheta+costheta=1, then the value of sin2theta is

    Text Solution

    |

  11. If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    Text Solution

    |

  12. If sintheta=(-4)/(5) and theta lies in third quadrant, then the value...

    Text Solution

    |

  13. The number of solutions of equation tanx+secx=2cosx lying in the inter...

    Text Solution

    |

  14. The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

    Text Solution

    |

  15. If A lies in the second quadrant and 3tanA + 4=0, then find the value ...

    Text Solution

    |

  16. The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Text Solution

    |

  17. If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal ...

    Text Solution

    |

  18. If tantheta=(a)/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |

  19. If for real values of x, costheta=x+(1)/(x), then

    Text Solution

    |

  20. The value of (sin50^(@))/(sin130^(@)) is ….. .

    Text Solution

    |