Home
Class 11
MATHS
If sintheta=(-4)/(5) and theta lies in t...

If `sintheta=(-4)/(5) and theta` lies in third quadrant, then the value of `cos""(theta)/(2)` is

A

`(1)/(5)`

B

`-(1)/(sqrt(10))`

C

`-(1)/(sqrt(5))`

D

`(1)/(sqrt(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\cos\left(\frac{\theta}{2}\right)\) given that \(\sin\theta = -\frac{4}{5}\) and \(\theta\) lies in the third quadrant. Here are the steps to find the solution: ### Step 1: Identify \(\cos\theta\) Since \(\sin\theta = -\frac{4}{5}\) and \(\theta\) is in the third quadrant, we can use the Pythagorean identity: \[ \sin^2\theta + \cos^2\theta = 1 \] Substituting the value of \(\sin\theta\): \[ \left(-\frac{4}{5}\right)^2 + \cos^2\theta = 1 \] \[ \frac{16}{25} + \cos^2\theta = 1 \] \[ \cos^2\theta = 1 - \frac{16}{25} \] \[ \cos^2\theta = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] Taking the square root, since \(\theta\) is in the third quadrant where cosine is negative: \[ \cos\theta = -\sqrt{\frac{9}{25}} = -\frac{3}{5} \] ### Step 2: Use the Half-Angle Formula Now we will use the half-angle formula for cosine: \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos\theta}{2}} \] Substituting \(\cos\theta = -\frac{3}{5}\): \[ \cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \frac{3}{5}}{2}} \] \[ = \sqrt{\frac{\frac{5}{5} - \frac{3}{5}}{2}} = \sqrt{\frac{\frac{2}{5}}{2}} = \sqrt{\frac{2}{10}} = \sqrt{\frac{1}{5}} = \frac{1}{\sqrt{5}} \] ### Step 3: Determine the Sign of \(\cos\left(\frac{\theta}{2}\right)\) Since \(\theta\) is in the third quadrant, \(\frac{\theta}{2}\) will be in the second quadrant (as it is half of an angle in the third quadrant). In the second quadrant, cosine is negative: \[ \cos\left(\frac{\theta}{2}\right) = -\frac{1}{\sqrt{5}} \] ### Final Answer Thus, the value of \(\cos\left(\frac{\theta}{2}\right)\) is: \[ \cos\left(\frac{\theta}{2}\right) = -\frac{1}{\sqrt{5}} \] ---

To solve the problem, we need to find the value of \(\cos\left(\frac{\theta}{2}\right)\) given that \(\sin\theta = -\frac{4}{5}\) and \(\theta\) lies in the third quadrant. Here are the steps to find the solution: ### Step 1: Identify \(\cos\theta\) Since \(\sin\theta = -\frac{4}{5}\) and \(\theta\) is in the third quadrant, we can use the Pythagorean identity: \[ \sin^2\theta + \cos^2\theta = 1 \] Substituting the value of \(\sin\theta\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If sin theta=-(4)/(5) and theta lies in third quadrant, then the value of cos((theta)/(2)) is

If sin theta = - (3)/(5) and theta lies in the third quadrant, then the value of cos (theta//2) is

If sin theta=(4)/(5) and theta is not in the first quadrant,find the value of cos theta

If tan theta=-(1)/(sqrt(5)) and theta lies in the IVB quadrant,then the value of cos theta is (sqrt(5))/(sqrt(6))b(2)/(sqrt(6))c*(1)/(2)d*(1)/(sqrt(6))

If tan theta=(1)/sqrt(5) and theta lies in the first quadrant, the value of cos theta is :

If tan theta=3 and theta lies in third quadrant then sin theta=

If tan theta=3 and theta lies in third quadrant then sin theta=

If tan theta = (1)/(sqrt5) and theta lies in the first quadrant, the value of costheta is :

NCERT EXEMPLAR-TRIGONOMETRIC FUNCTIONS -OBJECTIVE TYPE QUESTIONS
  1. The minimum of 3cosx +4sin x+8 is

    Text Solution

    |

  2. tan 3A-tan 2A-tan A= is equal to

    Text Solution

    |

  3. The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

    Text Solution

    |

  4. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  5. cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

    Text Solution

    |

  6. The value of cos12^@+cos84^@+cos156^@+cos132^@ is

    Text Solution

    |

  7. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  8. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  9. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  10. If sintheta+costheta=1, then the value of sin2theta is

    Text Solution

    |

  11. If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    Text Solution

    |

  12. If sintheta=(-4)/(5) and theta lies in third quadrant, then the value...

    Text Solution

    |

  13. The number of solutions of equation tanx+secx=2cosx lying in the inter...

    Text Solution

    |

  14. The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

    Text Solution

    |

  15. If A lies in the second quadrant and 3tanA + 4=0, then find the value ...

    Text Solution

    |

  16. The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Text Solution

    |

  17. If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal ...

    Text Solution

    |

  18. If tantheta=(a)/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |

  19. If for real values of x, costheta=x+(1)/(x), then

    Text Solution

    |

  20. The value of (sin50^(@))/(sin130^(@)) is ….. .

    Text Solution

    |