Home
Class 11
MATHS
lim(xto(pi//4)) (tan^(3)x-tanx)/(cos(x+p...

`lim_(xto(pi//4)) (tan^(3)x-tanx)/(cos(x+pi/4))`

Text Solution

Verified by Experts

Given, `underset(xto(pi//4))"lim"(tan^(3)x-tanx)/(cos(x+pi/4))`
`=underset(xto(pi)/4)"lim"(tanx(tan^(2)x-1))/(cos(x+pi/4))= underset(xto(pi//4))"lim"tanx.underset(xto(pi//4))"lim"((1-tan^(2)x)/(cos(x+(gpi)/4)))`
`=underset(xto(pi//4))(-1xx"lim")((1+tanx)(1-tanx))/(cos(x+pi/4))` `[therefore a^(2)-b^(2)=(a+b)(a-b)]`
`-underset(xto(pi//4))"lim"(1+tanx) underset(xto(pi//4))"lim"[(cosx-sinx)/(cosx.cos(x+pi/4)]]`
`=-(1+1) xx underset(xto(pi//4))"lim"(sqrt(2)[1/sqrt(2).cosx-1/sqrt(2).sinx])/(cosx.cos(x+pi/4))=-2sqrt(2)underset(xto(pi//4))"lim"[(cospi/4.cosx-sinpi/4.sinx)/(cosx.cos(x+pi/4))]` `[therefore cosA.cosB-sinAsinB=cos(A+B)]`
`=-2sqrt(2)underset(xto(pi//4))"lim"(cos(x+pi/4))/(cos.cos(x+pi/4))=-2sqrt(2)xx1/(1/sqrt(2))=-2sqrt(2)xx sqrt(2)=-4`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

lim_(x to pi/4)(tan^3x-tanx)/(cos(pi/4+x))=alpha and lim_(x to 0)(cosx)^cotx=beta .If alpha and beta are the roots of equation ax^2+bx-4 then ordered pair (a,b) is

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))