Home
Class 11
MATHS
Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and...

Let `f(x) =(kcosx)/(pi-2x)` if `x!=pi/2` and `f(x=pi/2)` if `x=pi/2`then find the value of `k` if `lim_(x->pi/2) f(x)=f(pi/2)`

Text Solution

Verified by Experts

Given, `{{:((kcosx)/(pi-2x)"," , "When " xne (pi)/2),(3",", "When " x=(pi)/2):}`
`therefore` LHL =`lim_(xto(pi^(-))//2)(kcosx)/(pi-2x)= lim_(hto0)(kcos(pi/2-h))/(pi-2(pi/2-h))`
`k/2lim_(hto0)(sinh)/(h)=k/2.1=k/2` `[therefore lim_(hto0)(sinx)/(x)=1]`
RHL `=lim_(hto0)(kcosx)/(pi-2x)=underset(xto(pi//2))"lim"+(kcos(pi/2+h))/(pi-2(pi/2+h))`
`=lim_(hto0)(-ksinh)/(pi-pi-2h)=lim_(hto0)(ksinh)/(h)=k/2lim_(hto0)(sinh)/(2h)=k/2 "and" f(pi/2)=3`
It is given that, `therefore lim_(xto(pi//2))f(x)=f(pi/2)rArr k/2=3` k=6
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(k cos x)/(pi-2x) if x!=(pi)/(2) and f(x=(pi)/(2)) if x=(pi)/(2) then find the value of k if lim_(x rarr(pi)/(2))f(x)=f((pi)/(2))

For f(x)=(k cos x)/(pi-2x), if x!=(pi)/(2),3, if x=(pi)/(2) then find the value of k so that f is continous at x=(pi)/(2)

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

If f(x)=x+sin x, then find the value of int_(pi)^(2 pi)f^(-1)(x)dx

Given f'(x) = (cos x )/( x ), ,f ((pi)/(2)) =a, f ((3pi)/(2))=b. Find the vlaue of the definite integral int _( pi//2) ^(3pi//2) f (x) dx.

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xrarr(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

Given f'(x)=(cos x)/(x),f((pi)/(2))=a,f((3 pi)/(2))=b Find the value of the definite integral int_((pi)/(7))^((pi)/(2))f(x)dx

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

If f(x) = {{:((k cos x)/(pi - 2x), x ne pi//2),(1, x = pi//2):} , is a continous function at x = pi//2 , then the value of k is-