Home
Class 11
MATHS
lim(xrarr0)((1+x)^(n)-1)/(x) is equal to...

`lim_(xrarr0)((1+x)^(n)-1)/(x)` is equal to

A

n

B

1

C

`-n`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `lim_(xto0)((1+x)^(n)-1)/(x) = lim_(xto0)((1+x)^(n)-1)/((1+x)-1)=lim_(xto0)((1+x)^(n)-1)/((1+x)-1)`
`lim_(xto0)((1+x)^(n)-1^(n))/((1+x)-1)=lim_((1+x)to1)((1+x)^(n)-1^(n))/((1+x)-1)`
`=n.(1)^(n-1)=n` `[therefore lim_(xtoa)(x^(n)-a^(n))/(x-a) = na^(n-1)]`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((x+1)^(5)-1)/(x)

lim_(xrarr0) (sqrt(1+x)-1)/(x) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

The value of lim_(xrarr0)(secx+tanx)^(1)/(x) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to