Home
Class 11
MATHS
lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal ...

`lim_(xrarr1)(x^(m)-1)/(x^(n)-1)` is equal to

A

1

B

`m/n`

C

`-m/n`

D

`m^(2)/n^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `lim_(xto1)(x^(m)-1)/(x^(n)-1) = lim_(xto1)((x^(m)-1)/(x-1))/((x^(n)-1)/(x-1))`
`(m(1)^(m-1))/(n(1)^(n-1)) = m/n` `[therefore (x^(n)-a^(n))/(x-a)=na^(n-1)]`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

lim_(xrarr1)(x^8-2x+1)/(x^4-2x+1) equals

lim_(xrarr oo)(1+(1)/(x))^(x//2) is equal to

lim_(xrarr1)(x^2-3x+2)/(x^2-1)=?

lim_(xrarr0) (sqrt(1+x)-1)/(x) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

The value of lim_(xrarr1)(xtan{x})/(x-1) is equal to (where {x} denotes the fractional part of x)