Home
Class 11
MATHS
lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) ...

`lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x))` is equal to

A

2

B

0

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} \), we can follow these steps: ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{x+1} + \sqrt{1-x} \). \[ \lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} \cdot \frac{\sqrt{x+1} + \sqrt{1-x}}{\sqrt{x+1} + \sqrt{1-x}} \] ### Step 2: Simplify the Expression This gives us: \[ \lim_{x \to 0} \frac{\sin x (\sqrt{x+1} + \sqrt{1-x})}{(\sqrt{x+1} - \sqrt{1-x})(\sqrt{x+1} + \sqrt{1-x})} \] The denominator simplifies as follows: \[ (\sqrt{x+1})^2 - (\sqrt{1-x})^2 = (x + 1) - (1 - x) = x + 1 - 1 + x = 2x \] So, we have: \[ \lim_{x \to 0} \frac{\sin x (\sqrt{x+1} + \sqrt{1-x})}{2x} \] ### Step 3: Split the Limit Now we can separate the limit: \[ \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{\sqrt{x+1} + \sqrt{1-x}}{2} \] ### Step 4: Evaluate the First Limit We know from calculus that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Step 5: Evaluate the Second Limit Now we need to evaluate: \[ \lim_{x \to 0} \frac{\sqrt{x+1} + \sqrt{1-x}}{2} \] Substituting \( x = 0 \): \[ \frac{\sqrt{0+1} + \sqrt{1-0}}{2} = \frac{\sqrt{1} + \sqrt{1}}{2} = \frac{1 + 1}{2} = 1 \] ### Step 6: Combine the Results Now we can combine our results: \[ 1 \cdot 1 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} = 1 \] ---

To solve the limit \( \lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} \), we can follow these steps: ### Step 1: Rationalize the Denominator We start by rationalizing the denominator. We multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{x+1} + \sqrt{1-x} \). \[ \lim_{x \to 0} \frac{\sin x}{\sqrt{x+1} - \sqrt{1-x}} \cdot \frac{\sqrt{x+1} + \sqrt{1-x}}{\sqrt{x+1} + \sqrt{1-x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

lim_(xrarr1) (sinsqrt(x))/(sqrt(sinx)) is equal to

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

The value of lim_(xrarr0)(sin^(2)3x)/(sqrt(3+secx-2)) is equal to

lim_(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)

lim_(xrarr0)(tanx-sinx)/(x^3)=

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

NCERT EXEMPLAR-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x] = 0} , Where[.] denotes the ...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |