Home
Class 11
MATHS
lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is...

`lim_(xrarr(pi//4))(sec^2x-2)/(tanx-1)` is

A

3

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x - 2}{\tan x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression to check if we get an indeterminate form. \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we have: \[ \sec^2\left(\frac{\pi}{4}\right) - 2 = 2 - 2 = 0 \] \[ \tan\left(\frac{\pi}{4}\right) - 1 = 1 - 1 = 0 \] This gives us the form \( \frac{0}{0} \), which is indeterminate. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) = \sec^2 x - 2 \) and \( g(x) = \tan x - 1 \). ### Step 3: Differentiate the Numerator and Denominator Now we differentiate the numerator and denominator separately. 1. **Numerator**: \[ f'(x) = \frac{d}{dx}(\sec^2 x - 2) = 2 \sec^2 x \tan x \] 2. **Denominator**: \[ g'(x) = \frac{d}{dx}(\tan x - 1) = \sec^2 x \] ### Step 4: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \frac{\pi}{4}} \frac{2 \sec^2 x \tan x}{\sec^2 x} \] ### Step 5: Simplify the Expression We can simplify this expression: \[ \lim_{x \to \frac{\pi}{4}} 2 \tan x \] ### Step 6: Substitute Again Now we substitute \( x = \frac{\pi}{4} \) into the simplified limit: \[ 2 \tan\left(\frac{\pi}{4}\right) = 2 \cdot 1 = 2 \] ### Final Answer Thus, the limit is: \[ \boxed{2} \]

To solve the limit \( \lim_{x \to \frac{\pi}{4}} \frac{\sec^2 x - 2}{\tan x - 1} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression to check if we get an indeterminate form. \[ \sec^2\left(\frac{\pi}{4}\right) = 2 \quad \text{and} \quad \tan\left(\frac{\pi}{4}\right) = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Select the correct alternatives out of given four alternatives in each. lim_(xto(pi)/(4))(sec^(2)x-2)/(tanx-1) is-

Evaluate the following limits: lim_(xrarr(pi)/(4))((cosec^(2)x-2))/((cotx-1))

The value lim_(xrarr pi//2)(sinx)^(tanx) , is

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

Evaluate: (i)lim_(xrarr(pi)/(2))(sec x-tanx)" "(ii)lim_(xrarr0)((cosecx-cotx))/(x)

lim_ (x rarr (pi) / (4)) (sec ^ (2) x-2) / (tan x-1)

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

NCERT EXEMPLAR-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x] = 0} , Where[.] denotes the ...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |