Home
Class 11
MATHS
lim(xrarr0)(|sinx|)/(x) is equal to...

`lim_(xrarr0)(|sinx|)/(x)` is equal to

A

1

B

`-1`

C

Does not exist

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{|\sin x|}{x} \), we can break it down into steps. ### Step 1: Understand the absolute value function The absolute value function \( |\sin x| \) behaves differently depending on the sign of \( \sin x \): - When \( x \geq 0 \), \( |\sin x| = \sin x \). - When \( x < 0 \), \( |\sin x| = -\sin x \). ### Step 2: Define the limit in terms of left-hand and right-hand limits To find the limit as \( x \) approaches 0, we can consider the left-hand limit (as \( x \) approaches 0 from the negative side) and the right-hand limit (as \( x \) approaches 0 from the positive side). ### Step 3: Calculate the right-hand limit For \( x \geq 0 \): \[ \lim_{x \to 0^+} \frac{|\sin x|}{x} = \lim_{x \to 0^+} \frac{\sin x}{x} \] Using the standard limit result \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0^+} \frac{|\sin x|}{x} = 1 \] ### Step 4: Calculate the left-hand limit For \( x < 0 \): \[ \lim_{x \to 0^-} \frac{|\sin x|}{x} = \lim_{x \to 0^-} \frac{-\sin x}{x} \] Again, using the standard limit result: \[ \lim_{x \to 0^-} \frac{-\sin x}{x} = -1 \] ### Step 5: Compare the left-hand and right-hand limits Now we have: - Right-hand limit: \( 1 \) - Left-hand limit: \( -1 \) Since the left-hand limit does not equal the right-hand limit, we conclude that: \[ \lim_{x \to 0} \frac{|\sin x|}{x} \text{ does not exist.} \] ### Final Answer: The limit \( \lim_{x \to 0} \frac{|\sin x|}{x} \) does not exist. ---

To evaluate the limit \( \lim_{x \to 0} \frac{|\sin x|}{x} \), we can break it down into steps. ### Step 1: Understand the absolute value function The absolute value function \( |\sin x| \) behaves differently depending on the sign of \( \sin x \): - When \( x \geq 0 \), \( |\sin x| = \sin x \). - When \( x < 0 \), \( |\sin x| = -\sin x \). ### Step 2: Define the limit in terms of left-hand and right-hand limits ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xrarr0)(sinx)^(2tanx)

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

NCERT EXEMPLAR-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x] = 0} , Where[.] denotes the ...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |