Home
Class 11
MATHS
if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx)...

if `y=sqrt(x) + 1/sqrt(x)`, then `(dy)/(dx)` at `x=1` is equal to

A

1

B

`1/2`

C

`1/sqrt(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sqrt{x} + \frac{1}{\sqrt{x}}\) at \(x = 1\), we will follow these steps: ### Step 1: Rewrite the function The function can be rewritten using exponent notation: \[ y = x^{1/2} + x^{-1/2} \] ### Step 2: Differentiate the function Now, we will differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(x^{1/2}) + \frac{d}{dx}(x^{-1/2}) \] Using the power rule \(\frac{d}{dx}(x^n) = n \cdot x^{n-1}\), we differentiate each term: 1. For \(x^{1/2}\): \[ \frac{d}{dx}(x^{1/2}) = \frac{1}{2}x^{-1/2} \] 2. For \(x^{-1/2}\): \[ \frac{d}{dx}(x^{-1/2}) = -\frac{1}{2}x^{-3/2} \] Combining these results, we have: \[ \frac{dy}{dx} = \frac{1}{2}x^{-1/2} - \frac{1}{2}x^{-3/2} \] ### Step 3: Substitute \(x = 1\) Now, we will evaluate \(\frac{dy}{dx}\) at \(x = 1\): \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{1}{2}(1)^{-1/2} - \frac{1}{2}(1)^{-3/2} \] Calculating each term: - \((1)^{-1/2} = 1\) - \((1)^{-3/2} = 1\) Thus, we have: \[ \frac{dy}{dx} \bigg|_{x=1} = \frac{1}{2}(1) - \frac{1}{2}(1) = \frac{1}{2} - \frac{1}{2} = 0 \] ### Final Answer \[ \frac{dy}{dx} \text{ at } x = 1 \text{ is } 0 \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \sqrt{x} + \frac{1}{\sqrt{x}}\) at \(x = 1\), we will follow these steps: ### Step 1: Rewrite the function The function can be rewritten using exponent notation: \[ y = x^{1/2} + x^{-1/2} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

If y =sqrt(x) + (1)/(sqrt(x)) , "then" 2 x . (dy)/(dx) is equal to

If y = x^sqrt(x) , "then "(dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x)), then (dy)/(dx) equals-

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If y=e^(sqrt(x))+e^(-sqrt(x))," then "(dy)/(dx) is equal to

If y=sqrt((1-x)/(1+x)) then (dy)/(dx) equals

If y = sin^(-1) sqrt(1-x), "then " (dy)/(dx) is equal to

If y= log (sqrt(x - 1)) - sqrt(x + 1)) , "then " (dy)/(dx) is equal to

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

NCERT EXEMPLAR-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x] = 0} , Where[.] denotes the ...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |