Home
Class 11
MATHS
if y=(sinx+cosx)/(sinx-cosx), then (dy)/...

if `y=(sinx+cosx)/(sinx-cosx)`, then `(dy)/(dx)` at x=0 is equal to

A

`-2`

B

0

C

`1/2`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \frac{\sin x + \cos x}{\sin x - \cos x}\) at \(x = 0\), we will follow these steps: ### Step 1: Differentiate the function using the Quotient Rule The Quotient Rule states that if you have a function \(y = \frac{u}{v}\), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: - \(u = \sin x + \cos x\) - \(v = \sin x - \cos x\) ### Step 2: Find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\) Now we differentiate \(u\) and \(v\): \[ \frac{du}{dx} = \cos x - \sin x \] \[ \frac{dv}{dx} = \cos x + \sin x \] ### Step 3: Apply the Quotient Rule Now we apply the Quotient Rule: \[ \frac{dy}{dx} = \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2} \] ### Step 4: Simplify the numerator Let's simplify the numerator: 1. Expand both products: - First term: \((\sin x - \cos x)(\cos x - \sin x) = -(\sin^2 x - \cos^2 x)\) - Second term: \((\sin x + \cos x)(\cos x + \sin x) = \sin^2 x + \cos^2 x\) 2. Combine these: \[ -\sin^2 x + \cos^2 x - (\sin^2 x + \cos^2 x) = -2\sin^2 x \] So, the numerator becomes: \[ -2\sin^2 x \] ### Step 5: Write the derivative Thus, we have: \[ \frac{dy}{dx} = \frac{-2\sin^2 x}{(\sin x - \cos x)^2} \] ### Step 6: Evaluate at \(x = 0\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = 0\): 1. Calculate \(\sin(0) = 0\) and \(\cos(0) = 1\): - Numerator: \(-2\sin^2(0) = -2(0)^2 = 0\) - Denominator: \((\sin(0) - \cos(0))^2 = (0 - 1)^2 = 1\) Thus: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{0}{1} = 0 \] ### Final Answer The value of \(\frac{dy}{dx}\) at \(x = 0\) is \(0\). ---

To find the derivative \(\frac{dy}{dx}\) of the function \(y = \frac{\sin x + \cos x}{\sin x - \cos x}\) at \(x = 0\), we will follow these steps: ### Step 1: Differentiate the function using the Quotient Rule The Quotient Rule states that if you have a function \(y = \frac{u}{v}\), then the derivative is given by: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, let: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

int(cosx)/(sinx+cosx)dx=

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=sinx and u=cosx, then (dy)/(du) is equal to

If y=(sinx +cosx )^((1+tanx )),then (dy)/(dx) =

If y=sinx/(1+cosx) then (dy)/(dx)=

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

int(sinx)/(sinx-cosx)dx=

int(sinx+cosx)/(3sinx+4cosx)dx=

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=tan^(-1)[(sinx+cosx)/(cosx-sinx)] then (dy)/(dx) is

NCERT EXEMPLAR-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x] /[x],[x] != 0 ; 0, [x] = 0} , Where[.] denotes the ...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |