Home
Class 10
MATHS
The 11th term of an AP -5, (-5)/(2), 0, ...

The 11th term of an AP -5, `(-5)/(2)`, 0, `(5)/(2)`, …

A

-20

B

20

C

-30

D

30

Text Solution

AI Generated Solution

The correct Answer is:
To find the 11th term of the given arithmetic progression (AP) -5, -5/2, 0, 5/2, ..., we can use the formula for the nth term of an AP: **Step 1: Identify the first term (a) and the common difference (d).** - The first term \( a \) is -5. - To find the common difference \( d \), we can subtract the first term from the second term: \[ d = -\frac{5}{2} - (-5) = -\frac{5}{2} + 5 = -\frac{5}{2} + \frac{10}{2} = \frac{5}{2} \] **Step 2: Use the formula for the nth term of an AP.** - The formula for the nth term \( A_n \) is given by: \[ A_n = a + (n - 1) \cdot d \] - Here, we need to find the 11th term, so \( n = 11 \). **Step 3: Substitute the values into the formula.** - Substitute \( a = -5 \), \( n = 11 \), and \( d = \frac{5}{2} \) into the formula: \[ A_{11} = -5 + (11 - 1) \cdot \frac{5}{2} \] \[ A_{11} = -5 + 10 \cdot \frac{5}{2} \] \[ A_{11} = -5 + 25 \] **Step 4: Calculate the final result.** - Now, simplify the expression: \[ A_{11} = -5 + 25 = 20 \] Thus, the 11th term of the AP is **20**.

To find the 11th term of the given arithmetic progression (AP) -5, -5/2, 0, 5/2, ..., we can use the formula for the nth term of an AP: **Step 1: Identify the first term (a) and the common difference (d).** - The first term \( a \) is -5. - To find the common difference \( d \), we can subtract the first term from the second term: \[ d = -\frac{5}{2} - (-5) = -\frac{5}{2} + 5 = -\frac{5}{2} + \frac{10}{2} = \frac{5}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • AREAS RELATED TO CIRCLE

    NCERT EXEMPLAR|Exercise Long Answer Type Questions|3 Videos
  • CIRCLES

    NCERT EXEMPLAR|Exercise Circles|44 Videos

Similar Questions

Explore conceptually related problems

Find the 25th term of the AP -5, (-5)/(2), 0, (5)/(2),….

The 11 ^(th) term of the A.P.:-5,- (5)/(2), 0, (5)/(2),... is

Find the 105th term of the AP 4, 4(1)/(2), 5, 5(1)/(2), 6…

11th term of an A.P. -3, -1/2, …….. Is

11th term of the A.P., -3, (-1)/2, 2, ………… is:

(i) The sum of the first n terms of an AP is ((5n^(2))/(2) + (3n)/(2)) . Find the nth term and the 20th term of this AP. (ii) The sum of the first n terms of an AP is ((3n^(2))/(2) + (5n)/(2)). Find its nth term and the 25th term.

The 26th, 11th and the last terms of an AP are, 0, 3 and -(1)/(5) , respectively. Find the common difference and the number of terms.

The n^(th) term of the AP in 2,5,8 …. Is

The 4th term from the end of an AP -11, -8, -5, …, 49 is

The 11^(th) term of the AP: sqrt(2), 3sqrt(2), 5sqrt(2),…. is:

NCERT EXEMPLAR-ARITHMETIC PROGRESSIONS-Arithmetic Progressions
  1. In an AP, if a = 3.5, d = 0 and n = 101, then a(n) will be

    Text Solution

    |

  2. The list of number -10, -6, -2, 2, … is

    Text Solution

    |

  3. The 11th term of an AP -5, (-5)/(2), 0, (5)/(2), …

    Text Solution

    |

  4. The first four terms of an A.P. whose first term is -2 and the common ...

    Text Solution

    |

  5. The 21st term of an AP whose first two terms are -3 and 4, is

    Text Solution

    |

  6. If the 2nd term of an AP is 13 and 5th term is 25, what is its 7th ter...

    Text Solution

    |

  7. Which term of an AP : 21, 42, 63, 84, … is 210 ?

    Text Solution

    |

  8. If the common difference of an AP is 5, then what is a(18)-a(13) ?

    Text Solution

    |

  9. What is the common difference of an AP in which a(18)-a(14)=32?

    Text Solution

    |

  10. Two APs have the same common difference. The first term of one of the...

    Text Solution

    |

  11. If 7 times the 7th term of an AP is equal to 11 times its 11th term, t...

    Text Solution

    |

  12. The 4th term from the end of an AP -11, -8, -5, …, 49 is

    Text Solution

    |

  13. The famous mathematician associated with finding the sum of the first ...

    Text Solution

    |

  14. If the first term of an AP is -5 and the common difference is 2, then ...

    Text Solution

    |

  15. The sum of first 16 terms of the AP 10, 6, 2, … is

    Text Solution

    |

  16. In an AP, if a = 1, a(n)= 20 and S(n) = 399, then n is equal to

    Text Solution

    |

  17. The sum of first five multiples of 3 is

    Text Solution

    |

  18. Which of the following form of an AP ? Justify Your answer. (i) -1,-...

    Text Solution

    |

  19. Justify whether it is true to say that -1, (-3)/(2), -2, (5)/(2), … ...

    Text Solution

    |

  20. For the AP -3, -7, -11, … can we find directly a(30)-a(20) without ac...

    Text Solution

    |