Home
Class 11
MATHS
Differentiate ((x^(a))/(x^(b)))^(a+b)*((...

Differentiate `((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a)` with respect to x.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \[ f(x) = \left(\frac{x^a}{x^b}\right)^{a+b} \cdot \left(\frac{x^b}{x^c}\right)^{b+c} \cdot \left(\frac{x^c}{x^a}\right)^{c+a} \] with respect to \(x\), we can simplify it first before differentiating. ### Step-by-step Solution: 1. **Simplify each term:** We can rewrite each fraction: \[ \frac{x^a}{x^b} = x^{a-b}, \quad \frac{x^b}{x^c} = x^{b-c}, \quad \frac{x^c}{x^a} = x^{c-a} \] Therefore, we can express \(f(x)\) as: \[ f(x) = \left(x^{a-b}\right)^{a+b} \cdot \left(x^{b-c}\right)^{b+c} \cdot \left(x^{c-a}\right)^{c+a} \] 2. **Apply the power rule:** Using the power of a power property \((x^m)^n = x^{mn}\), we can rewrite \(f(x)\): \[ f(x) = x^{(a-b)(a+b)} \cdot x^{(b-c)(b+c)} \cdot x^{(c-a)(c+a)} \] 3. **Combine the exponents:** Since the bases are the same, we can add the exponents: \[ f(x) = x^{(a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a)} \] 4. **Simplify the exponent:** Let's denote the exponent as: \[ E = (a-b)(a+b) + (b-c)(b+c) + (c-a)(c+a) \] Expanding each term: \[ E = (a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) \] Notice that \(a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0\). Hence: \[ E = 0 \] 5. **Final expression for \(f(x)\):** Therefore, we have: \[ f(x) = x^0 = 1 \] 6. **Differentiate \(f(x)\):** Now, we differentiate \(f(x)\) with respect to \(x\): \[ f'(x) = \frac{d}{dx}(1) = 0 \] ### Final Answer: Thus, the derivative of the function is: \[ f'(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that: ((x^(a))/(x^(b)))^(c)x((x^(b))/(x^(c)))^(a)x((x^(c))/(x^(a)))^(b)=1

Prove that :((x^(a))/(x^(b)))^(a+b-c)((x^(b))/(x^(c)))^(b+c-a)((x^(c))/(x^(a)))^(c+a-b)=1

Simplify: (x^(a)/x^(b))^(a+b). (x^(b)/x^(c ))^(b+c) .(x^( c)/x^(a))^(c+a)

((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a)=? a.0 b.x^(abc) c.x^(a+b+c)d.1=? a.0

((x^(a))/(x^(b)))^(a+b-c)*((x^(b))/(x^(c)))^(b+c-a)*((x^(c))/(x^(a)))^(c+a-b)= a.1 b.x^(abc) c.x^(ab+bc+ca) d.x^(a+b+c)

Differentiate (x^(x))^(x) with respect to x:

Differentiate (ax)^(m)+((b)/(x))^(n) with respect to 'x'.

Differentiate x^(x)^^x with respect to x:

Differentiate y=x^(a)+a^(x)+a^(a) with respect to x .