Home
Class 11
MATHS
Evaluate the following Limits lim(xto ...

Evaluate the following Limits
`lim_(xto 0)(1-cos2x)/(x*tan3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{x \tan(3x)}, \] we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) directly into the limit: \[ \frac{1 - \cos(2 \cdot 0)}{0 \cdot \tan(3 \cdot 0)} = \frac{1 - \cos(0)}{0 \cdot \tan(0)} = \frac{1 - 1}{0} = \frac{0}{0}. \] This is an indeterminate form, so we need to simplify the expression. **Hint:** When you encounter a \( \frac{0}{0} \) form, consider using trigonometric identities or L'Hôpital's Rule. ### Step 2: Use the trigonometric identity We use the identity \( 1 - \cos(2x) = 2 \sin^2(x) \): \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{x \tan(3x)} = \lim_{x \to 0} \frac{2 \sin^2(x)}{x \tan(3x)}. \] **Hint:** Remember that \( \tan(3x) = \frac{\sin(3x)}{\cos(3x)} \). ### Step 3: Rewrite the limit Now we can rewrite the limit using the definition of tangent: \[ \lim_{x \to 0} \frac{2 \sin^2(x)}{x \cdot \frac{\sin(3x)}{\cos(3x)}} = \lim_{x \to 0} \frac{2 \sin^2(x) \cos(3x)}{x \sin(3x)}. \] **Hint:** It may help to separate the limit into parts that can be evaluated individually. ### Step 4: Split the limit We can separate the limit into two parts: \[ \lim_{x \to 0} \frac{2 \sin^2(x)}{x} \cdot \lim_{x \to 0} \frac{\cos(3x)}{\sin(3x)}. \] **Hint:** Use the known limits \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) and \( \lim_{x \to 0} \cos(x) = 1 \). ### Step 5: Evaluate the limits 1. For the first limit, we can rewrite \( \sin^2(x) \) as \( \left(\frac{\sin(x)}{x}\right)^2 \cdot x^2 \): \[ \lim_{x \to 0} \frac{2 \sin^2(x)}{x} = 2 \cdot \lim_{x \to 0} \frac{\sin^2(x)}{x^2} \cdot x = 2 \cdot 1 \cdot 0 = 0. \] 2. For the second limit: \[ \lim_{x \to 0} \frac{\cos(3x)}{\sin(3x)} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{\cos(3x)}{x} = \frac{1}{3} \cdot 1 = \frac{1}{3}. \] **Hint:** Remember that \( \sin(3x) \) can be approximated as \( 3x \) when \( x \) is near 0. ### Step 6: Combine the results Now we combine the results: \[ \lim_{x \to 0} \frac{2 \sin^2(x)}{x} \cdot \lim_{x \to 0} \frac{\cos(3x)}{\sin(3x)} = 0 \cdot \frac{1}{3} = 0. \] Thus, the final result is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(x to 0)(1-cos^(2)x)/(3 tan^(2)x)

Evaluate the following Limits lim_(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)x)

Evaluate the following Limits lim_(xto pi)(1+sec^(3)x)/(tan^(2)x)

Evaluate the following limit: (lim)_(x->0)(1-cos5x)/(3x^2)

Evaluate the following Limits lim_(xto1)(x-1)/(log_(e)x)

Evaluate the following limits: lim((1-cos2x))/(3tan^(2)x)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limits: lim_(xrarr0)((1-cos3x))/(x^(2))

Evaluate the following limit: (lim)_(x rarr0)(1-cos4x)/(x^(2))

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((cos2x-cos8x))

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Evaluate the following Limits lim(xto oo)(2x^(8)-3x^(2)+1)/(x^(8)+6x...

    Text Solution

    |

  2. Evaluate the following Limits lim(xto 1)(2x^(8)-3x^(2)+1)/(x^(8)+6x^...

    Text Solution

    |

  3. Evaluate the following Limits lim(xto 0)(1-cos2x)/(x*tan3x)

    Text Solution

    |

  4. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  5. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  7. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  8. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  9. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  10. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  11. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  12. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  13. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  15. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  16. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  17. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |

  18. Evaluate the following Limits lim(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+...

    Text Solution

    |

  19. Differentiate the following w.r.t. ((x-1)(x-2)(x-3))/(x^(2)-5x+6)

    Text Solution

    |

  20. Differentiate the following w.r.t. (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/...

    Text Solution

    |