Home
Class 11
MATHS
Evaluate the following Limits lim(xto0...

Evaluate the following Limits
`lim_(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(x) \sqrt{\cos(2x)}}{\sin^2(x)}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \(x = 0\) directly into the limit: \[ 1 - \cos(0) \sqrt{\cos(0)} = 1 - 1 \cdot 1 = 0, \] and \[ \sin^2(0) = 0. \] This gives us the indeterminate form \(\frac{0}{0}\). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}\) or \(\frac{\infty}{\infty}\), then: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}. \] Let \(f(x) = 1 - \cos(x) \sqrt{\cos(2x)}\) and \(g(x) = \sin^2(x)\). ### Step 3: Differentiate the numerator and denominator We differentiate \(f(x)\) and \(g(x)\): 1. **Differentiate the numerator \(f(x)\)**: - Using the product rule and chain rule: \[ f'(x) = \frac{d}{dx}(1 - \cos(x) \sqrt{\cos(2x)}) = 0 - \left(-\sin(x) \sqrt{\cos(2x)} + \cos(x) \cdot \frac{1}{2\sqrt{\cos(2x)}} \cdot (-\sin(2x) \cdot 2)\right). \] - This simplifies to: \[ f'(x) = \sin(x) \sqrt{\cos(2x)} + \frac{\sin(2x) \cos(x)}{\sqrt{\cos(2x)}}. \] 2. **Differentiate the denominator \(g(x)\)**: \[ g'(x) = \frac{d}{dx}(\sin^2(x)) = 2\sin(x)\cos(x). \] ### Step 4: Rewrite the limit using L'Hôpital's Rule Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{\sin(x) \sqrt{\cos(2x)} + \frac{\sin(2x) \cos(x)}{\sqrt{\cos(2x)}}}{2\sin(x)\cos(x)}. \] ### Step 5: Simplify the limit We can factor out \(\sin(x)\) from the numerator: \[ = \lim_{x \to 0} \frac{\sin(x) \left(\sqrt{\cos(2x)} + \frac{\sin(2x) \cos(x)}{\sin(x) \sqrt{\cos(2x)}}\right)}{2\sin(x)\cos(x)}. \] Cancel \(\sin(x)\): \[ = \lim_{x \to 0} \frac{\sqrt{\cos(2x)} + \frac{\sin(2x) \cos(x)}{\sin(x) \sqrt{\cos(2x)}}}{2\cos(x)}. \] ### Step 6: Evaluate the limit Now substitute \(x = 0\): \[ = \frac{\sqrt{\cos(0)} + \frac{\sin(0) \cos(0)}{\sin(0) \sqrt{\cos(0)}}}{2\cos(0)} = \frac{1 + 0}{2 \cdot 1} = \frac{1}{2}. \] ### Final Step: Multiply by 2 We need to multiply by 2 (from the denominator): \[ = \frac{3}{2}. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{1 - \cos(x) \sqrt{\cos(2x)}}{\sin^2(x)} = \frac{3}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Limits lim_(xto0)(cosax-cosbx)/(1-cosx)

Evaluate the following Limits lim_(xto 0)(1-cos2x)/(x*tan3x)

Evaluate the following limits: lim_(x to0)(sqrt2-sqrt(1+cosx))/(2x+sin3x)

Evaluate the following limits: lim_(xrarr0)(cos2x-1)/(cosx-1)

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/(sin^(2)2x)

Evaluate the following limits: lim_(xrarr0)((1-cosx))/(sin^(2)x)

Evaluate the following limits : lim_(x to 0)(x(2^(x)-1))/(1-cosx) .

Evaluate the following limits: lim_(xrarr0)((1-cos2x))/((cos2x-cos8x))

Evaluate the following Limits lim_(xto(pi)/(6))(sqrt(3)sinx-cosx)/((pi)/(6)-x)

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  2. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  3. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  4. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  8. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  9. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  10. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  11. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  12. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  13. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |

  15. Evaluate the following Limits lim(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+...

    Text Solution

    |

  16. Differentiate the following w.r.t. ((x-1)(x-2)(x-3))/(x^(2)-5x+6)

    Text Solution

    |

  17. Differentiate the following w.r.t. (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/...

    Text Solution

    |

  18. Differentiate the following w.r.t. (xsinx+cosx)/(xsinx-cosx)

    Text Solution

    |

  19. Differentiate the following w.r.t. x x*sinx*e^(x)

    Text Solution

    |

  20. Find the values of a and b if lim(xto2)f(x) and lim(xto4)f(x) exists w...

    Text Solution

    |