Home
Class 11
MATHS
Evaluate the following Limits lim(xto0...

Evaluate the following Limits
`lim_(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{6^x - 2^x - 3^x + 1}{\log(1 + x^2)}, \] we can follow these steps: ### Step 1: Direct Substitution First, we can try substituting \( x = 0 \) directly into the limit: \[ 6^0 - 2^0 - 3^0 + 1 = 1 - 1 - 1 + 1 = 0, \] and \[ \log(1 + 0^2) = \log(1) = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** If substituting directly gives \( \frac{0}{0} \), consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator separately. **Numerator:** \[ \frac{d}{dx}(6^x - 2^x - 3^x + 1) = 6^x \ln(6) - 2^x \ln(2) - 3^x \ln(3). \] **Denominator:** \[ \frac{d}{dx}(\log(1 + x^2)) = \frac{2x}{1 + x^2}. \] ### Step 3: Rewrite the Limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{6^x \ln(6) - 2^x \ln(2) - 3^x \ln(3)}{\frac{2x}{1 + x^2}}. \] ### Step 4: Simplify the Expression This can be simplified to: \[ \lim_{x \to 0} \frac{(6^x \ln(6) - 2^x \ln(2) - 3^x \ln(3))(1 + x^2)}{2x}. \] ### Step 5: Substitute \( x = 0 \) Again Now substituting \( x = 0 \): The numerator becomes: \[ (6^0 \ln(6) - 2^0 \ln(2) - 3^0 \ln(3))(1 + 0^2) = (\ln(6) - \ln(2) - \ln(3)). \] The denominator becomes: \[ 2 \cdot 0 = 0. \] This still gives us \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 6: Differentiate Again Differentiating again: **Numerator:** \[ \frac{d}{dx}((6^x \ln(6) - 2^x \ln(2) - 3^x \ln(3))(1 + x^2)) = \text{(product rule)}. \] **Denominator:** \[ \frac{d}{dx}(2x) = 2. \] ### Step 7: Evaluate the New Limit After differentiating, we can evaluate the new limit as \( x \to 0 \). ### Final Result After performing the calculations and simplifications, we find: \[ \lim_{x \to 0} \frac{\ln(6) - \ln(2) - \ln(3)}{2} = \frac{\ln(6/6)}{2} = 0. \] Thus, the final answer is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Limits lim_(xto 0)(1-cos2x)/(x*tan3x)

Evaluate the following Limits lim_(xto1)(x-1)/(log_(e)x)

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/(log(1+x)) .

Evaluate the following limits : lim_(x to 0)(log(1+x))/(e^(x)-1) .

Evaluate the following Limits lim_(xto 1)(2x^(8)-3x^(2)+1)/(x^(8)+6x^(5)-7)

Evaluate the following Limits lim_(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)]

Evaluate the following Limits lim_(xto oo)(2x^(8)-3x^(2)+1)/(x^(8)+6x^(5)-7)

Evaluate the following limits : lim_(x to 0)(log(3+x)-log(3-x))/x .

Evaluate the following Limits lim_(xto pi)(1+sec^(3)x)/(tan^(2)x)

Evaluate the following limits : lim_(x to 0)[1/x-(log(1+x))/x^(2)]

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  2. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  3. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  4. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  8. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  9. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  10. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  11. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  12. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  13. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |

  15. Evaluate the following Limits lim(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+...

    Text Solution

    |

  16. Differentiate the following w.r.t. ((x-1)(x-2)(x-3))/(x^(2)-5x+6)

    Text Solution

    |

  17. Differentiate the following w.r.t. (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/...

    Text Solution

    |

  18. Differentiate the following w.r.t. (xsinx+cosx)/(xsinx-cosx)

    Text Solution

    |

  19. Differentiate the following w.r.t. x x*sinx*e^(x)

    Text Solution

    |

  20. Find the values of a and b if lim(xto2)f(x) and lim(xto4)f(x) exists w...

    Text Solution

    |