Home
Class 11
MATHS
Differentiate the following w.r.t. x x*...

Differentiate the following w.r.t. x
`x*sinx*e^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = x \sin x \cdot e^x \) with respect to \( x \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] In our case, we have three functions multiplied together: \( u = x \sin x \), \( v = e^x \). We will first differentiate \( y \) with respect to \( x \). ### Step 1: Identify the functions Let: - \( u = x \sin x \) - \( v = e^x \) ### Step 2: Differentiate \( v \) The derivative of \( v \) is: \[ \frac{dv}{dx} = \frac{d}{dx}(e^x) = e^x \] ### Step 3: Differentiate \( u \) Now, we need to differentiate \( u = x \sin x \). Here, we will again apply the product rule: Let: - \( a = x \) - \( b = \sin x \) Then, \[ \frac{du}{dx} = a \frac{db}{dx} + b \frac{da}{dx} \] Calculating the derivatives: \[ \frac{da}{dx} = 1 \quad \text{and} \quad \frac{db}{dx} = \cos x \] Thus, \[ \frac{du}{dx} = x \cos x + \sin x \] ### Step 4: Apply the product rule for \( y \) Now we can apply the product rule to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting the values we have: \[ \frac{dy}{dx} = (x \sin x) e^x + e^x (x \cos x + \sin x) \] ### Step 5: Factor out \( e^x \) We can factor out \( e^x \): \[ \frac{dy}{dx} = e^x \left( x \sin x + x \cos x + \sin x \right) \] ### Final Answer Thus, the derivative of \( y = x \sin x \cdot e^x \) with respect to \( x \) is: \[ \frac{dy}{dx} = e^x \left( x \sin x + x \cos x + \sin x \right) \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t.x. e^(x)sinx

Differentiate the following w.r.t. x : e^(x)sinx

Differentiate the following w.r.t.x. (sinx)^(cosx)

Differentiate the following w.r.t. x : (sinx)^(x)+sin^(-1)sqrtx

Differentiate the following w.r.t. x : log(sine^(x))

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t.x. x^(x)

Differentiate the following w.r.t. x : e^(x)/sinx

Differentiate the following w.r.t. x : (sinx)^(sinx)

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  2. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  3. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  4. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  8. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  9. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  10. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  11. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  12. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  13. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |

  15. Evaluate the following Limits lim(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+...

    Text Solution

    |

  16. Differentiate the following w.r.t. ((x-1)(x-2)(x-3))/(x^(2)-5x+6)

    Text Solution

    |

  17. Differentiate the following w.r.t. (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/...

    Text Solution

    |

  18. Differentiate the following w.r.t. (xsinx+cosx)/(xsinx-cosx)

    Text Solution

    |

  19. Differentiate the following w.r.t. x x*sinx*e^(x)

    Text Solution

    |

  20. Find the values of a and b if lim(xto2)f(x) and lim(xto4)f(x) exists w...

    Text Solution

    |