Home
Class 11
MATHS
Find the values of a and b if lim(xto2)f...


Find the values of a and b if `lim_(xto2)f(x) and lim_(xto4)f(x)` exists where
`f(x)={: (x^(2)+ax+b", "0lexlt2),(3x+2", "2lexle4),(2ax+5b", "4ltxlt8):}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the limits \( \lim_{x \to 2} f(x) \) and \( \lim_{x \to 4} f(x) \) exist, we need to ensure that the left-hand limit and right-hand limit at these points are equal. ### Step 1: Finding the limit as \( x \to 2 \) For \( x \) approaching 2, we have: - Left-hand limit (\( x \to 2^- \)): \[ f(x) = x^2 + ax + b \] Evaluating at \( x = 2 \): \[ \lim_{x \to 2^-} f(x) = 2^2 + 2a + b = 4 + 2a + b \] - Right-hand limit (\( x \to 2^+ \)): \[ f(x) = 3x + 2 \] Evaluating at \( x = 2 \): \[ \lim_{x \to 2^+} f(x) = 3(2) + 2 = 6 + 2 = 8 \] Setting the left-hand limit equal to the right-hand limit: \[ 4 + 2a + b = 8 \] This simplifies to: \[ 2a + b = 4 \quad \text{(Equation 1)} \] ### Step 2: Finding the limit as \( x \to 4 \) For \( x \) approaching 4, we have: - Left-hand limit (\( x \to 4^- \)): \[ f(x) = 3x + 2 \] Evaluating at \( x = 4 \): \[ \lim_{x \to 4^-} f(x) = 3(4) + 2 = 12 + 2 = 14 \] - Right-hand limit (\( x \to 4^+ \)): \[ f(x) = 2ax + 5b \] Evaluating at \( x = 4 \): \[ \lim_{x \to 4^+} f(x) = 2a(4) + 5b = 8a + 5b \] Setting the left-hand limit equal to the right-hand limit: \[ 8a + 5b = 14 \quad \text{(Equation 2)} \] ### Step 3: Solving the equations Now we have a system of equations: 1. \( 2a + b = 4 \) 2. \( 8a + 5b = 14 \) From Equation 1, we can express \( b \) in terms of \( a \): \[ b = 4 - 2a \] Substituting \( b \) into Equation 2: \[ 8a + 5(4 - 2a) = 14 \] Expanding this: \[ 8a + 20 - 10a = 14 \] Combining like terms: \[ -2a + 20 = 14 \] Subtracting 20 from both sides: \[ -2a = -6 \] Dividing by -2: \[ a = 3 \] Now substituting \( a = 3 \) back into Equation 1 to find \( b \): \[ 2(3) + b = 4 \] This simplifies to: \[ 6 + b = 4 \] Subtracting 6 from both sides: \[ b = -2 \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = 3, \quad b = -2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|10 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|20 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos

Similar Questions

Explore conceptually related problems

If lim_( xto 2 ) (f(x) -f(2))/( x-2) exist ,then

If f(x) is continuous on [0, 8] , where f(x)={:{(x^(2)+ax+6", for " 0 le x lt 2),(3x+2", for " 2 le x le 4),(2ax+5b", for " 4 lt x le 8):} , then

Find the value of 'a' such that lim_(x rarr 2) f(x) exists, where f(x) = {(ax+5, x lt 2),(x-1, x ge 2):}

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

Given f(x)=(ax+b)/(x+1), lim_(x to oo)f(x)=1 and lim_(x to 0)f(x)=2 , then f(-2) is

The function f(x) Is defined as follows : f(x)={{:(x^(2)+ax+b" , "0lexlt2),(3x+2" , "2lexle4),(2ax+5b" , "4ltxle8):} . If f(x) is continuous on [0,8], find the values of 'a' and 'b'.

Evaluate: lim_(x rarr 2)(f(x)-f(2))/(x-2), "where" f(x)=x^(2)-4x

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

CBSE COMPLEMENTARY MATERIAL-LIMITS AND DERIVATIVES -LONG ANSWER TYPE QUESTIONS
  1. Evaluate, underset(xto(pi//4))"lim"(sinx-cosx)/(x-pi/4)

    Text Solution

    |

  2. Evaluate the following Limits lim(xto(pi)/(6))(sqrt(3)sinx-cosx)/((p...

    Text Solution

    |

  3. Evaluate the following Limits lim(xto0)(sinx)/(tanx)

    Text Solution

    |

  4. Evaluate the following Limits lim(xto 9)(x^((3)/(2))-27)/(x^(2)-81)

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->a)((x+2)^(5//2)-(a+2)^(5//2))/(...

    Text Solution

    |

  6. Evaluate the following Limits lim(xto0)(cosax-cosbx)/(1-cosx)

    Text Solution

    |

  7. Evaluate the following limits: lim(xtoa)(cosx-cosa)/(cotx-cota)

    Text Solution

    |

  8. Evaluate the following Limits lim(xto pi)(1+sec^(3)x)/(tan^(2)x)

    Text Solution

    |

  9. Evaluate the following Limits lim(xto1)(x-1)/(log(e)x)

    Text Solution

    |

  10. Evaluate the following Limits lim(xtoe)(x-e)/((log(e)x)-1)

    Text Solution

    |

  11. Evaluate the following Limits lim(xto2)[(4)/(x^(3)-2x^(2))+(1)/(2-x)...

    Text Solution

    |

  12. Evaluate the following Limits lim(xtoa)[(sqrt(a+2x)-sqrt(3x))/(sqrt(...

    Text Solution

    |

  13. Evaluate the following limits: lim(xto0)([sin(2+x)-sin(2-x)])/(x)

    Text Solution

    |

  14. Evaluate the following Limits lim(xto0)(1-cosx*sqrt(cos2x))/(sin^(2)...

    Text Solution

    |

  15. Evaluate the following Limits lim(xto0)(6^(x)-2^(x)-3^(x)+1)/(log(1+...

    Text Solution

    |

  16. Differentiate the following w.r.t. ((x-1)(x-2)(x-3))/(x^(2)-5x+6)

    Text Solution

    |

  17. Differentiate the following w.r.t. (x-(1)/(x))(x+(1)/(x))(x^(2)+(1)/...

    Text Solution

    |

  18. Differentiate the following w.r.t. (xsinx+cosx)/(xsinx-cosx)

    Text Solution

    |

  19. Differentiate the following w.r.t. x x*sinx*e^(x)

    Text Solution

    |

  20. Find the values of a and b if lim(xto2)f(x) and lim(xto4)f(x) exists w...

    Text Solution

    |