Home
Class 12
MATHS
If f:{1,3} rarr {1,2,5} "and " g:{1,2,5}...

If `f:{1,3} rarr {1,2,5} "and " g:{1,2,5} rarr{1,2,3,4}` be given by `f={(1,2),(3,5)}, g={(1,3),(2,3),(5,1)}`,
write g of.

Text Solution

AI Generated Solution

The correct Answer is:
To find the composition of functions \( g \) and \( f \) (denoted as \( g \circ f \)), we will follow these steps: ### Step 1: Identify the functions We have two functions: - \( f: \{1, 3\} \to \{1, 2, 5\} \) defined by \( f = \{(1, 2), (3, 5)\} \) - \( g: \{1, 2, 5\} \to \{1, 2, 3, 4\} \) defined by \( g = \{(1, 3), (2, 3), (5, 1)\} \) ### Step 2: Find \( g(f(x)) \) for each \( x \) in the domain of \( f \) We will evaluate \( g(f(1)) \) and \( g(f(3)) \). #### Step 2.1: Calculate \( f(1) \) From the function \( f \): - \( f(1) = 2 \) #### Step 2.2: Calculate \( g(f(1)) = g(2) \) From the function \( g \): - \( g(2) = 3 \) So, we have \( g(f(1)) = 3 \). #### Step 2.3: Calculate \( f(3) \) From the function \( f \): - \( f(3) = 5 \) #### Step 2.4: Calculate \( g(f(3)) = g(5) \) From the function \( g \): - \( g(5) = 1 \) So, we have \( g(f(3)) = 1 \). ### Step 3: Compile the results Now we can compile the results of \( g(f(x)) \): - For \( x = 1 \), \( g(f(1)) = 3 \) - For \( x = 3 \), \( g(f(3)) = 1 \) Thus, the composition \( g \circ f \) can be represented as: \[ g \circ f = \{(1, 3), (3, 1)\} \] ### Final Answer The composition \( g \circ f \) is \( \{(1, 3), (3, 1)\} \). ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|11 Videos
  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|13 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

Let f:{1,3,4}rarr{1,2,5} and g:{1,2,5}rarr{1,3} be given by f={(1,2),(3,5),(4,1)} and g={(1,3),(2,3),(5,1)}. Write down gof.

If f:{5,6}rarr{2,3} and g:{2,3}rarr{5,6} are given by f={(5,2),(6,3)} and g={(2,5),(3,6)}, find fog.

If f={(5,2),(6,3)},g={(2,5),(3,6)} write f@g

If the mappings f and g are given by : f={(1,2),(3,5),(4,1)} and g={(2,3),(5,1),(1,3)} , write fog.

If the mapping f:{1,\ 3,\ 4}->{1,\ 2,\ 5} and g:{1,\ 2,\ 5}->{1,\ 3} , given by f={(1,\ 2),\ (3,\ 5),\ (4,\ 1)} and g={(2,\ 3),\ (5,\ 1),\ (1,\ 3)} , write fogdot

If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is

If f = {(1,4), (2,5),(3,5) and g ={(4,8),(5,7),(6,9)}, then gof is

If the mappings f and g are given by f = {(1,2),(3,5),(4, 1)}, g= {(2,3), (5, 1), (1,3)}, then write down pairs in the mappings f o g and go f.