Home
Class 12
MATHS
If f:[1, oo) rarr [2, oo) is defined by ...

If `f:[1, oo) rarr [2, oo)` is defined by `f(x)=x+1/x`, find `f^(-1)(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x + \frac{1}{x} \) defined from \( [1, \infty) \) to \( [2, \infty) \), we will follow these steps: ### Step 1: Set up the equation We start by setting \( y = f(x) \): \[ y = x + \frac{1}{x} \] ### Step 2: Rearrange the equation To find \( x \) in terms of \( y \), we can rearrange the equation: \[ y = x + \frac{1}{x} \implies yx = x^2 + 1 \] This can be rewritten as: \[ x^2 - yx + 1 = 0 \] ### Step 3: Identify the quadratic equation The equation \( x^2 - yx + 1 = 0 \) is a quadratic equation in \( x \) where: - \( a = 1 \) - \( b = -y \) - \( c = 1 \) ### Step 4: Apply the quadratic formula We can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting \( a \), \( b \), and \( c \): \[ x = \frac{y \pm \sqrt{(-y)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{y \pm \sqrt{y^2 - 4}}{2} \] ### Step 5: Determine the correct sign Since \( f(x) \) is increasing for \( x \geq 1 \), we will take the positive root: \[ f^{-1}(y) = \frac{y + \sqrt{y^2 - 4}}{2} \] ### Step 6: Replace \( y \) with \( x \) For the inverse function, we replace \( y \) with \( x \): \[ f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = \frac{x + \sqrt{x^2 - 4}}{2}, \quad \text{for } x \in [2, \infty) \] ---
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|13 Videos
  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|7 Videos
  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|7 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

f:(0,oo)rarr(0,oo) defined by f(x)=x^(2) is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

Let f:[1,oo)rarr[2,oo) be defined by f(x)=x+(1)/(x) . If f(n_(1))=sqrt(5) then 2((n_(1))/(2)-sin18^(@))