Home
Class 12
MATHS
Let A={(1,2,3,4},B=(3,5,7,9} and C=(7,23...

Let `A={(1,2,3,4},B=(3,5,7,9}` and `C=(7,23,47,79}` and `f= A rarr B, g:B rarrC` be defined by `f(x)=2x+1 AA x in A` and `g(x)=x^(2)-2 AA x in B`.. Find `(gof)^(-1)` and `f^(-1)og^(-1)` at sets of ordered pairs. Is `(gof)^(-1)=f^(-1)og^(-1)`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the functions and then find the required inverses and compositions. ### Step 1: Define the Functions Given: - Set \( A = \{1, 2, 3, 4\} \) - Set \( B = \{3, 5, 7, 9\} \) - Set \( C = \{7, 23, 47, 79\} \) The functions are defined as: - \( f: A \to B \) where \( f(x) = 2x + 1 \) for \( x \in A \) - \( g: B \to C \) where \( g(x) = x^2 - 2 \) for \( x \in B \) ### Step 2: Find the Function \( f \) Calculate \( f(x) \) for each \( x \in A \): - \( f(1) = 2(1) + 1 = 3 \) - \( f(2) = 2(2) + 1 = 5 \) - \( f(3) = 2(3) + 1 = 7 \) - \( f(4) = 2(4) + 1 = 9 \) Thus, the mapping of \( f \) is: \[ f = \{(1, 3), (2, 5), (3, 7), (4, 9)\} \] ### Step 3: Find the Function \( g \) Calculate \( g(y) \) for each \( y \in B \): - \( g(3) = 3^2 - 2 = 9 - 2 = 7 \) - \( g(5) = 5^2 - 2 = 25 - 2 = 23 \) - \( g(7) = 7^2 - 2 = 49 - 2 = 47 \) - \( g(9) = 9^2 - 2 = 81 - 2 = 79 \) Thus, the mapping of \( g \) is: \[ g = \{(3, 7), (5, 23), (7, 47), (9, 79)\} \] ### Step 4: Find the Composition \( g \circ f \) Now, we find \( g(f(x)) \): - \( g(f(1)) = g(3) = 7 \) - \( g(f(2)) = g(5) = 23 \) - \( g(f(3)) = g(7) = 47 \) - \( g(f(4)) = g(9) = 79 \) Thus, the mapping of \( g \circ f \) is: \[ g \circ f = \{(1, 7), (2, 23), (3, 47), (4, 79)\} \] ### Step 5: Find the Inverse \( (g \circ f)^{-1} \) To find \( (g \circ f)^{-1} \), we reverse the ordered pairs: \[ (g \circ f)^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\} \] ### Step 6: Find the Inverse \( f^{-1} \) To find \( f^{-1} \): - From \( f(x) = 2x + 1 \), we set \( y = 2x + 1 \) and solve for \( x \): \[ y - 1 = 2x \] \[ x = \frac{y - 1}{2} \] Thus, the inverse function is: \[ f^{-1}(y) = \frac{y - 1}{2} \] Now, we find \( f^{-1}(y) \) for \( y \in B \): - \( f^{-1}(3) = \frac{3 - 1}{2} = 1 \) - \( f^{-1}(5) = \frac{5 - 1}{2} = 2 \) - \( f^{-1}(7) = \frac{7 - 1}{2} = 3 \) - \( f^{-1}(9) = \frac{9 - 1}{2} = 4 \) Thus, the mapping of \( f^{-1} \) is: \[ f^{-1} = \{(3, 1), (5, 2), (7, 3), (9, 4)\} \] ### Step 7: Find the Inverse \( g^{-1} \) To find \( g^{-1} \): - From \( g(x) = x^2 - 2 \), we set \( y = x^2 - 2 \) and solve for \( x \): \[ y + 2 = x^2 \] \[ x = \sqrt{y + 2} \] Thus, the inverse function is: \[ g^{-1}(y) = \sqrt{y + 2} \] Now, we find \( g^{-1}(y) \) for \( y \in C \): - \( g^{-1}(7) = \sqrt{7 + 2} = 3 \) - \( g^{-1}(23) = \sqrt{23 + 2} = 5 \) - \( g^{-1}(47) = \sqrt{47 + 2} = 7 \) - \( g^{-1}(79) = \sqrt{79 + 2} = 9 \) Thus, the mapping of \( g^{-1} \) is: \[ g^{-1} = \{(7, 3), (23, 5), (47, 7), (79, 9)\} \] ### Step 8: Find the Composition \( f^{-1} \circ g^{-1} \) Now, we find \( f^{-1}(g^{-1}(y)) \): - For \( y = 7 \): \( g^{-1}(7) = 3 \), \( f^{-1}(3) = 1 \) → \( (7, 1) \) - For \( y = 23 \): \( g^{-1}(23) = 5 \), \( f^{-1}(5) = 2 \) → \( (23, 2) \) - For \( y = 47 \): \( g^{-1}(47) = 7 \), \( f^{-1}(7) = 3 \) → \( (47, 3) \) - For \( y = 79 \): \( g^{-1}(79) = 9 \), \( f^{-1}(9) = 4 \) → \( (79, 4) \) Thus, the mapping of \( f^{-1} \circ g^{-1} \) is: \[ f^{-1} \circ g^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\} \] ### Step 9: Compare \( (g \circ f)^{-1} \) and \( f^{-1} \circ g^{-1} \) We have: - \( (g \circ f)^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\} \) - \( f^{-1} \circ g^{-1} = \{(7, 1), (23, 2), (47, 3), (79, 4)\} \) Since both sets are equal, we conclude that: \[ (g \circ f)^{-1} = f^{-1} \circ g^{-1} \] ### Final Answer Yes, \( (g \circ f)^{-1} = f^{-1} \circ g^{-1} \).
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|13 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|9 Videos

Similar Questions

Explore conceptually related problems

If f, g: R to R be defined by f(x)=2x+1 and g(x) =x^(2)-2, AA x in R, respectively. Then , find gof .

If f(x)=3x-1 and g(x)=x^(2)+1 then gof=

If f:RrarrR,g:RrarrR are defined by f(x)=3x-1 and g(x)=x^(2)+1 , then find (i) fof(x^(2)+1) (ii) fog(2) (iii) gof(2a-3)

Let f(x) = 3x + 5 AA x in R, g^(-1)(x) = x^(3) +1 AA x in R , then (f^(-1).g)^(-1)(x) is equal to

If A={-2,-1,0,1,2} and f:A rarr B is a surjection defined by f(x)=x^(2)+x+1 , then find B.

If f and g are two bijections; then gof is a bijection and (gof)^(-1)=f^(-1)og^(-1)

Let f:R rarr R be defined as f(x)=x^(3)+3x^(2)+6x-5+4e^(2x) and g(x)=f^(-1)(x) ,then find g'(-1)

Let f : R rarr R and g : R rarr R be two given functions defined as f(x) = 3x^(2) + 2 and g(x) = 3x-1, AA x in R Then find [(gof)(x)] at x = 1.

Let f : R rarr R be defined by f(x) = x^(2) + 3x + 1 and g : R rarr R is defined by g(x) = 2x - 3, Find, (i) fog (ii) gof

Let f:R to be defined by f(x)=3x^(2)-5 and g : R to R by g(x)=(x)/(x^(2))+1 then gof is