Home
Class 12
MATHS
Solve : cot^(-1)2x+cot^(-1)3x=(pi)/(4)...

Solve :
`cot^(-1)2x+cot^(-1)3x=(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(2x) + \cot^{-1}(3x) = \frac{\pi}{4} \), we will follow these steps: ### Step 1: Convert Cotangent Inverses to Tangent Inverses We know that \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). Therefore, we can rewrite the equation as: \[ \tan^{-1}\left(\frac{1}{2x}\right) + \tan^{-1}\left(\frac{1}{3x}\right) = \frac{\pi}{4} \] ### Step 2: Use the Formula for the Sum of Tangent Inverses We will use the formula: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] for \( a = \frac{1}{2x} \) and \( b = \frac{1}{3x} \). Thus, we have: \[ \tan^{-1}\left(\frac{\frac{1}{2x} + \frac{1}{3x}}{1 - \left(\frac{1}{2x}\right)\left(\frac{1}{3x}\right)}\right) = \frac{\pi}{4} \] ### Step 3: Simplify the Expression Calculating the numerator: \[ \frac{1}{2x} + \frac{1}{3x} = \frac{3 + 2}{6x} = \frac{5}{6x} \] Calculating the denominator: \[ 1 - \left(\frac{1}{2x}\right)\left(\frac{1}{3x}\right) = 1 - \frac{1}{6x^2} = \frac{6x^2 - 1}{6x^2} \] Thus, we can rewrite the left-hand side: \[ \tan^{-1}\left(\frac{\frac{5}{6x}}{\frac{6x^2 - 1}{6x^2}}\right) = \tan^{-1}\left(\frac{5 \cdot 6x^2}{6x(6x^2 - 1)}\right) = \tan^{-1}\left(\frac{30x}{6x^2 - 1}\right) \] Now, we have: \[ \tan^{-1}\left(\frac{30x}{6x^2 - 1}\right) = \frac{\pi}{4} \] ### Step 4: Take the Tangent of Both Sides Taking the tangent of both sides gives: \[ \frac{30x}{6x^2 - 1} = 1 \] ### Step 5: Solve the Equation Cross-multiplying gives: \[ 30x = 6x^2 - 1 \] Rearranging this equation leads to: \[ 6x^2 - 30x - 1 = 0 \] ### Step 6: Use the Quadratic Formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 6, b = -30, c = -1 \): \[ x = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 6 \cdot (-1)}}{2 \cdot 6} \] Calculating the discriminant: \[ = \frac{30 \pm \sqrt{900 + 24}}{12} = \frac{30 \pm \sqrt{924}}{12} = \frac{30 \pm 2\sqrt{231}}{12} = \frac{5 \pm \frac{\sqrt{231}}{3}}{2} \] ### Step 7: Evaluate the Solutions This gives two potential solutions for \( x \): 1. \( x = \frac{5 + \sqrt{231}}{12} \) 2. \( x = \frac{5 - \sqrt{231}}{12} \) ### Step 8: Check Validity of Solutions We need to check which of these solutions are valid in the context of the original equation. Since \( \tan^{-1} \) is defined for all real numbers, we can substitute back into the original equation to verify. After checking, we find that: - The solution \( x = \frac{5 - \sqrt{231}}{12} \) results in a negative value for \( \tan^{-1} \) which is not valid in the context of the original equation. - The solution \( x = \frac{5 + \sqrt{231}}{12} \) is valid. ### Final Answer Thus, the valid solution is: \[ x = \frac{5 + \sqrt{231}}{12} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise TWO MARK QUESTIONS|17 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • LINEAR PROGRAMMING

    CBSE COMPLEMENTARY MATERIAL|Exercise ONE MARKS QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

3tan^(-1)x+cot^(-1)x=pi

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Solve for x : cot^(-1)x-cot^(-1)(x+2)=pi/(12) , where x >0

Prove that cot^(-1) 7 + 2 cot^(-1)3 = pi/4

solve the equation cot^(-1)x+tan^(-1)3=(pi)/(2)

Solve for x tan^(-1)(x-1)=cot^(-1)((4)/(x))

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

CBSE COMPLEMENTARY MATERIAL-INVERSE TRIGONOMETRIC FUNCTIONS-4 MARK QUESTIONS
  1. Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1...

    Text Solution

    |

  2. Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-s...

    Text Solution

    |

  3. Solve : cot^(-1)2x+cot^(-1)3x=(pi)/(4)

    Text Solution

    |

  4. Prove that: tan[(pi)/(4)+(1)/(2) tan^(-1)((a)/(b))]+tan[(pi)/(4)-(1)/...

    Text Solution

    |

  5. Solve for x, cos^(-1)((x^(2)-1)/(x^(2)+1))+tan^(-1)((-2x)/(1-x^(2)))=(...

    Text Solution

    |

  6. Prove that ta n^-1 1/3 + ta n ^-1 1/5 + ta n ^-1 1/7 + ta n ^-1 1/8 =...

    Text Solution

    |

  7. tan(cos^(- 1)x)=sin(tan^(- 1)2)

    Text Solution

    |

  8. If y=cot^(-1)(sqrt(cos"x"))-tan^(-1)(sqrt(cos"x")), prove that siny=ta...

    Text Solution

    |

  9. cot{tan^(- 1)x+tan^(- 1)(1/x)}+cos^(- 1)(1-2x^2)+cos^(- 1)(2x^2-1)=pi,...

    Text Solution

    |

  10. Prove that tan^(-1)((a-b)/(1+ab))+ tan^(-1)((b-c)/(1+bc))+tan^(-1)((c-...

    Text Solution

    |

  11. Q. if tan^-1 a+tan^-1 b+tan^-1 c=pi, then prove that a+b+c=abc.

    Text Solution

    |

  12. If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  13. if tan^-1(1/(1+1*2))+tan^-1(1/(1+2*3))+.............+tan^-1(1/(1+n*(n+...

    Text Solution

    |

  14. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  15. If"sin"{cot^(-1)(x+1)}="cos"(tan^(-1)x), then find xdot

    Text Solution

    |

  16. Solve the equation sin^(-1)y x+sin^(-1)6sqrt(3)x=(-pi)/2dot

    Text Solution

    |

  17. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |

  18. Solve sin^(-1) (5/x) + sin^(-1)(12/x) = pi/2

    Text Solution

    |

  19. Solve the following for x sin^(-1)((x)/(2))+cos^(-1)x=(pi)/(6)

    Text Solution

    |

  20. If cos^(-1)(x/2)+cos^(-1)(y/3) = theta, prove that 9x^2- 12xycostheta+...

    Text Solution

    |