Home
Class 12
MATHS
If y=2 sin^(-1) (cos x)+5"cosec "^(-1) "...

If `y=2 sin^(-1) (cos x)+5"cosec "^(-1) "(sec x). Find"(dy)/(dx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \[ y = 2 \sin^{-1}(\cos x) + 5 \cos^{-1}(\sec x), \] we will differentiate each term step by step. ### Step 1: Differentiate the first term \( 2 \sin^{-1}(\cos x) \) Using the chain rule, the derivative of \( \sin^{-1}(u) \) is given by \[ \frac{d}{dx} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] Here, \( u = \cos x \), so \[ \frac{du}{dx} = -\sin x. \] Thus, the derivative of the first term is: \[ \frac{d}{dx} [2 \sin^{-1}(\cos x)] = 2 \cdot \frac{1}{\sqrt{1 - \cos^2 x}} \cdot (-\sin x). \] Since \( 1 - \cos^2 x = \sin^2 x \), we have: \[ \sqrt{1 - \cos^2 x} = \sin x. \] Therefore, the derivative simplifies to: \[ \frac{d}{dx} [2 \sin^{-1}(\cos x)] = 2 \cdot \frac{-\sin x}{\sin x} = -2. \] ### Step 2: Differentiate the second term \( 5 \cos^{-1}(\sec x) \) Using the chain rule again, the derivative of \( \cos^{-1}(u) \) is given by \[ \frac{d}{dx} \cos^{-1}(u) = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx}. \] Here, \( u = \sec x \), so \[ \frac{du}{dx} = \sec x \tan x. \] Thus, the derivative of the second term is: \[ \frac{d}{dx} [5 \cos^{-1}(\sec x)] = 5 \cdot \left(-\frac{1}{\sqrt{1 - \sec^2 x}} \cdot \sec x \tan x\right). \] Since \( \sec^2 x - 1 = \tan^2 x \), we have: \[ 1 - \sec^2 x = -\tan^2 x \implies \sqrt{1 - \sec^2 x} = i \tan x. \] Thus, the derivative simplifies to: \[ \frac{d}{dx} [5 \cos^{-1}(\sec x)] = -5 \cdot \frac{\sec x \tan x}{i \tan x} = -5 \sec x. \] ### Step 3: Combine the derivatives Now, we combine the derivatives from both terms: \[ \frac{dy}{dx} = -2 - 5 \sec x. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -2 - 5 \sec x. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1)(cos x)+cos^(-1)(sin x) , prove that (dy)/(dx)=-2

If y = sec^(-1) [ "cosec x"] + "cosec"^(-1) [sec x] + sin^(-1) [cos x] + cos^(-1)[sinx ], "then "(dy)/(dx) is equal to

sin(sec^(-1)x+"cosec"^(-1)x)

If y = cos ^(-1) [sin (4^(x))], " find " (dy)/(dx)

If y=(sin x)^(tan x)+(cos x)^(sec x), find (dy)/(dx)

If y=sin^(-1)(3x)+sec^(-1)((1)/(3x)), find (dy)/(dx) .

If y="cosec"^(-1) (2x+1),"then "dy/dx=

If y=(sin^(-1)x-cos^(-1)x)/(sin^(-1)x+cos^(-1)x)," then "(dy)/(dx)=

y = tan ^ (- 1) ((cos x) / (1 + sin x)) then (dy) / (dx)