Home
Class 12
MATHS
Differentiate Sin^(-1) [xsqrtx] w.r.t.x....

Differentiate `Sin^(-1) [xsqrtx]` w.r.t.x.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( \sin^{-1}(x \sqrt{x}) \) with respect to \( x \), we will follow these steps: ### Step 1: Identify the function Let \( h = \sin^{-1}(x \sqrt{x}) \). ### Step 2: Differentiate using the chain rule The derivative of \( \sin^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{d}{du} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}} \] Here, \( u = x \sqrt{x} \). ### Step 3: Find \( \frac{du}{dx} \) Now we need to differentiate \( u = x \sqrt{x} \): \[ u = x \cdot x^{1/2} = x^{3/2} \] Using the power rule: \[ \frac{du}{dx} = \frac{3}{2} x^{1/2} \] ### Step 4: Apply the chain rule Using the chain rule, we have: \[ \frac{dh}{dx} = \frac{dh}{du} \cdot \frac{du}{dx} = \frac{1}{\sqrt{1 - (x \sqrt{x})^2}} \cdot \frac{du}{dx} \] ### Step 5: Substitute \( u \) and \( \frac{du}{dx} \) Now substitute \( u \) and \( \frac{du}{dx} \): \[ \frac{dh}{dx} = \frac{1}{\sqrt{1 - (x^{3/2})^2}} \cdot \frac{3}{2} x^{1/2} \] This simplifies to: \[ \frac{dh}{dx} = \frac{1}{\sqrt{1 - x^3}} \cdot \frac{3}{2} x^{1/2} \] ### Step 6: Final expression Thus, the derivative of \( \sin^{-1}(x \sqrt{x}) \) with respect to \( x \) is: \[ \frac{dh}{dx} = \frac{3 \sqrt{x}}{2 \sqrt{1 - x^3}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

Differentiate x^(x)sin^(-1)sqrtx w.r.t. x.

Differentiate sqrt(sin^(-1)sqrt(x)) w.r.t. x, ( 0 lt x lt 1 )

Differentiate sin^(-1)(sqrt(cosx)) w.r.t. x, using chain rule.

Differentiate sin^(-1)x w.r.t. tan^(-1)x .

Differentiate e^(sin^(-1)x) , w.r.t. x.

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate sin(x^(2)+x)w.r.t.x

Differentiate x^(sin^(-1)x) w.r.t. x.

Differentiate sin^(-1) [(3x+(4sqrt(1-x^(2))))/(5)] w.r.t.x .