Home
Class 12
MATHS
Find (dy)/(dx)" if y=sin"^(-1) ((sqrtx-1...

Find `(dy)/(dx)" if y=sin"^(-1) ((sqrtx-1)/(sqrtx+1))+sec^(-1) ((sqrtx+1)/(sqrtx-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right), \] we can follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right). \] ### Step 2: Use the identity for secant inverse Recall that: \[ \sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right). \] Thus, we can rewrite the second term: \[ \sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) = \cos^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right). \] ### Step 3: Combine the terms Now we can combine the two terms: \[ y = \sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) + \cos^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right). \] ### Step 4: Use the identity for sine and cosine inverse We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}. \] Since both terms have the same argument \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\), we can simplify: \[ y = \frac{\pi}{2}. \] ### Step 5: Differentiate both sides Now, we differentiate both sides with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}\left(\frac{\pi}{2}\right). \] Since \(\frac{\pi}{2}\) is a constant, its derivative is: \[ \frac{dy}{dx} = 0. \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrtx-(1)/(sqrtx)

y = sqrtx + 1/sqrtx

(1)/(sqrt(x+1)+sqrtx)

y = x+sqrtx+1/sqrtx

(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrt(x)+cos^(-1)sqrtx)

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

(d)/(dx)(sqrtx+(1)/(sqrtx))^2=

int ((1+sqrtx)^2)/sqrtx dx=

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)