Home
Class 12
MATHS
If y=f(x^(2)) and f'(x) =sin x^(2)." Fin...

If `y=f(x^(2)) and f'(x) =sin x^(2)." Find "(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( y = f(x^2) \) and \( f'(x) = \sin(x^2) \), we need to find \( \frac{dy}{dx} \). Here’s the step-by-step solution: ### Step 1: Differentiate \( y \) with respect to \( x \) Given \( y = f(x^2) \), we will use the chain rule to differentiate \( y \). Using the chain rule: \[ \frac{dy}{dx} = f'(x^2) \cdot \frac{d}{dx}(x^2) \] ### Step 2: Differentiate \( x^2 \) The derivative of \( x^2 \) with respect to \( x \) is: \[ \frac{d}{dx}(x^2) = 2x \] ### Step 3: Substitute \( f'(x^2) \) We know from the problem statement that \( f'(x) = \sin(x^2) \). Therefore, we substitute \( x^2 \) into \( f' \): \[ f'(x^2) = \sin((x^2)^2) = \sin(x^4) \] ### Step 4: Combine the results Now we can combine the results from Step 1, Step 2, and Step 3: \[ \frac{dy}{dx} = f'(x^2) \cdot 2x = \sin(x^4) \cdot 2x \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2x \sin(x^4) \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

y= sin(x^(2)) , Find (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f'(x)=sin x^(2), find (dy)/(dx)

If y= sin(x^(2)) , Find (dy)/(dx)

y=f((2x-1)/(x^(2)-1)) and f'(x)=sin x then (dy)/(dx)

If y = f((2x-1)/(x^(2)+1))and f'(x) = sin^(2) x, " then " (dy)/(dx) = ……. .

If y=f((3x+4)/(5x+6)) and f'(x)=tan x^(2) then (dy)/(dx)=

If y=f(cosx)" and "f'(x)=cos^(-1)x," then "(dy)/(dx)=

If y = f(x^2) and f'(x) = e^(sqrtx) , then find (dy)/(dx)

If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2) , then (dy)/(dx) is equal to