Home
Class 12
MATHS
Find (dy)/(dx)" if y"=sqrt(sin^(-1) sqrt...

Find `(dy)/(dx)" if y"=sqrt(sin^(-1) sqrt(x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) where \(y = \sqrt{\sin^{-1}(\sqrt{x})}\), we will use the chain rule and the derivatives of inverse trigonometric functions. ### Step-by-Step Solution: 1. **Identify the function**: \[ y = \sqrt{\sin^{-1}(\sqrt{x})} \] 2. **Differentiate using the chain rule**: The derivative of \(y\) with respect to \(x\) can be found using the chain rule. We first differentiate the outer function, which is the square root function: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\sin^{-1}(\sqrt{x})}} \cdot \frac{d}{dx}[\sin^{-1}(\sqrt{x})] \] 3. **Differentiate the inner function**: Now we need to differentiate \(\sin^{-1}(\sqrt{x})\). The derivative of \(\sin^{-1}(u)\) is given by \(\frac{1}{\sqrt{1 - u^2}}\), where \(u = \sqrt{x}\). Thus: \[ \frac{d}{dx}[\sin^{-1}(\sqrt{x})] = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx}[\sqrt{x}] \] 4. **Differentiate \(\sqrt{x}\)**: The derivative of \(\sqrt{x}\) is: \[ \frac{d}{dx}[\sqrt{x}] = \frac{1}{2\sqrt{x}} \] 5. **Combine the derivatives**: Now substituting back, we have: \[ \frac{d}{dx}[\sin^{-1}(\sqrt{x})] = \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}} \] 6. **Substitute back into the derivative of \(y\)**: Now substituting this back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1}{2\sqrt{\sin^{-1}(\sqrt{x})}} \cdot \left(\frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}\right) \] 7. **Simplify the expression**: Combining everything, we get: \[ \frac{dy}{dx} = \frac{1}{4\sqrt{x}\sqrt{\sin^{-1}(\sqrt{x})}\sqrt{1 - x}} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{1}{4\sqrt{x}\sqrt{\sin^{-1}(\sqrt{x})}\sqrt{1 - x}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 Marks Questions|36 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), if y=(sqrt(sin x))/(sin sqrt(x))

Find (dy)/(dx) if y=sin^(-1)(sqrt(x))

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

Find (dy)/(dx) of y=(sinx)^x+sin^(-1)sqrt(x) .

Find (dy)/(dx) if y=sin^(-1)[(6x-4sqrt(1-4x^(2)))/(5)]

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)),-a

find dy/dx if y=sqrt(x)sin^3x+sinsqrtx