Home
Class 12
MATHS
If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin ...

If `y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]]` where `0 lt x lt pi/2` find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( y = \tan^{-1} \left( \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \right) \) for \( 0 < x < \frac{\pi}{2} \). ### Step 1: Simplifying the Expression We start with the expression inside the arctangent function: \[ y = \tan^{-1} \left( \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \right) \] To simplify, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(\sqrt{1 + \sin x} - \sqrt{1 - \sin x})(\sqrt{1 + \sin x} - \sqrt{1 - \sin x})}{(\sqrt{1 + \sin x} + \sqrt{1 - \sin x})(\sqrt{1 + \sin x} - \sqrt{1 - \sin x})} \] ### Step 2: Applying the Difference of Squares The denominator simplifies using the difference of squares: \[ (\sqrt{1 + \sin x})^2 - (\sqrt{1 - \sin x})^2 = (1 + \sin x) - (1 - \sin x) = 2\sin x \] The numerator expands to: \[ (\sqrt{1 + \sin x} - \sqrt{1 - \sin x})^2 = (1 + \sin x) + (1 - \sin x) - 2\sqrt{(1 + \sin x)(1 - \sin x)} = 2 - 2\sqrt{1 - \sin^2 x} = 2 - 2\cos x \] Thus, we can rewrite \( y \): \[ y = \tan^{-1} \left( \frac{2(1 - \cos x)}{2\sin x} \right) = \tan^{-1} \left( \frac{1 - \cos x}{\sin x} \right) \] ### Step 3: Using Trigonometric Identities Using the identity \( 1 - \cos x = 2\sin^2\left(\frac{x}{2}\right) \) and \( \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \): \[ y = \tan^{-1} \left( \frac{2\sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} \right) = \tan^{-1} \left( \tan\left(\frac{x}{2}\right) \right) \] ### Step 4: Final Simplification Since \( y = \tan^{-1}(\tan(\frac{x}{2})) \), and for \( 0 < x < \frac{\pi}{2} \), we have: \[ y = \frac{x}{2} \] ### Step 5: Differentiating Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 Marks Questions|20 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , where 0lt xlt(pi)/(2), then (dy)/(dx) is equal to

cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2)

If y=cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))](0

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

Find the value of cot^(-1)[(sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x))]

If y=cot^(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))} Show that (dy)/(dx) is independent of x]}

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

The value of tan^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))} is : ((pi)/(2) lt x lt pi)

CBSE COMPLEMENTARY MATERIAL-CONTINUITY AND DIFFERENTIABILTY-4 Marks Questions
  1. If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

    Text Solution

    |

  2. If (x-y)dot(x-y)/x=a , Prove that y(dy)/(dx)+x=2ydot

    Text Solution

    |

  3. If x=tan(1/alogy) , show that (1+x^2)(d^2y)/(dx^2)+(2x-a)(dy)/(dx)=0 .

    Text Solution

    |

  4. If y=xlog"{"x/((a+b x))"]" , then show that x^3(d^2y)/(dx^2)=(x(dy)/(d...

    Text Solution

    |

  5. Differentiate sin^(-1){(2^(x+1). 3^x)/(1+(36)^x)}"w i t hr e s p e...

    Text Solution

    |

  6. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |

  7. If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f...

    Text Solution

    |

  8. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  9. If x^(y)+y^(x)+x^(x)=m^(n)." then find the value of "(dy)/(dx).

    Text Solution

    |

  10. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  11. If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin ...

    Text Solution

    |

  12. If x^(2)/a^(2)+y^(2)/b^(2)=1" then show that "(d^(2)y)/(dx^(2))=-b^(4)...

    Text Solution

    |

  13. Verify Rolle's theorem for the function f(x)=e^(x) sin 2x [0, pi/2]

    Text Solution

    |

  14. Verify Lagranges mean value theorem for function f(x)=sqrt(x^2-4) o...

    Text Solution

    |

  15. If Rolle's theorem holds for the function f(x) = x^(3) + bx^(2) + ax +...

    Text Solution

    |

  16. If y={x+sqrt(x^2+1)}^m , show that (x^2+1)y2+x y1-m^2\ y=0

    Text Solution

    |

  17. Differentiate sin^(-1) [(3x+(4sqrt(1-x^(2))))/(5)] w.r.t.x.

    Text Solution

    |

  18. If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

    Text Solution

    |

  19. If f:[-5,5]vecR is differentiable function and iff^(prime)(x) does not...

    Text Solution

    |

  20. If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y2+xy1 is equal to

    Text Solution

    |