Home
Class 12
MATHS
Differentiate sin^(-1) [(3x+(4sqrt(1-x^(...

Differentiate `sin^(-1) [(3x+(4sqrt(1-x^(2))))/(5)] w.r.t.x`.

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \sin^{-1} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right) \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ y = \sin^{-1} \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right) \] ### Step 2: Identify the inner function Let: \[ u = \frac{3x + 4\sqrt{1 - x^2}}{5} \] Then, we can rewrite \( y \) as: \[ y = \sin^{-1}(u) \] ### Step 3: Differentiate using the chain rule Using the chain rule, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] The derivative of \( \sin^{-1}(u) \) is: \[ \frac{dy}{du} = \frac{1}{\sqrt{1 - u^2}} \] ### Step 4: Differentiate \( u \) Now we need to differentiate \( u \): \[ u = \frac{3x + 4\sqrt{1 - x^2}}{5} \] Differentiating \( u \) with respect to \( x \): \[ \frac{du}{dx} = \frac{3}{5} + \frac{4}{5} \cdot \frac{d}{dx}(\sqrt{1 - x^2}) \] Using the derivative of \( \sqrt{1 - x^2} \): \[ \frac{d}{dx}(\sqrt{1 - x^2}) = \frac{-x}{\sqrt{1 - x^2}} \] Thus: \[ \frac{du}{dx} = \frac{3}{5} + \frac{4}{5} \cdot \left( \frac{-x}{\sqrt{1 - x^2}} \right) = \frac{3}{5} - \frac{4x}{5\sqrt{1 - x^2}} \] ### Step 5: Substitute back to find \(\frac{dy}{dx}\) Now we substitute \( \frac{du}{dx} \) back into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - u^2}} \cdot \left( \frac{3}{5} - \frac{4x}{5\sqrt{1 - x^2}} \right) \] ### Step 6: Calculate \( u^2 \) Next, we need to calculate \( u^2 \): \[ u^2 = \left( \frac{3x + 4\sqrt{1 - x^2}}{5} \right)^2 = \frac{(3x + 4\sqrt{1 - x^2})^2}{25} \] Expanding this: \[ u^2 = \frac{9x^2 + 24x\sqrt{1 - x^2} + 16(1 - x^2)}{25} = \frac{9x^2 + 16 - 16x^2 + 24x\sqrt{1 - x^2}}{25} = \frac{-7x^2 + 16 + 24x\sqrt{1 - x^2}}{25} \] ### Step 7: Substitute \( u^2 \) into \( \frac{dy}{dx} \) Now substitute \( u^2 \) into the expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \frac{-7x^2 + 16 + 24x\sqrt{1 - x^2}}{25}}} \cdot \left( \frac{3}{5} - \frac{4x}{5\sqrt{1 - x^2}} \right) \] ### Final Expression This gives us the final expression for the derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{25 - (-7x^2 + 16 + 24x\sqrt{1 - x^2})}{25}}} \cdot \left( \frac{3}{5} - \frac{4x}{5\sqrt{1 - x^2}} \right) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILTY

    CBSE COMPLEMENTARY MATERIAL|Exercise 2 Marks Questions|20 Videos
  • APPLICATIONS OF INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR/SIX MARK QUESTIONS|26 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate sin^(-1)(2xsqrt(1-x^(2))) w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) .

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate Sin^(-1) [xsqrtx] w.r.t.x.

Differentiate sin^(-1)(2axsqrt(1-a^(2)x^(2)))w.r.t.sqrt(1-a^(2)x^(2)).

Differentiate x^(sin^(-1)x) w.r.t. x.

Differentiate e^(sin^(-1)x) , w.r.t. x.

Differentiate tan^(-1)(x)/(1+sqrt((1-x^(2))))+{2tan^(-1)sqrt(((1-x)/(1+x)))}sin w.r.t.x

Differentiate sin^(-1)x w.r.t. tan^(-1)x .

Differentiate (sin x)^(5)+sin^(-1)sqrt(x)

CBSE COMPLEMENTARY MATERIAL-CONTINUITY AND DIFFERENTIABILTY-4 Marks Questions
  1. If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

    Text Solution

    |

  2. If (x-y)dot(x-y)/x=a , Prove that y(dy)/(dx)+x=2ydot

    Text Solution

    |

  3. If x=tan(1/alogy) , show that (1+x^2)(d^2y)/(dx^2)+(2x-a)(dy)/(dx)=0 .

    Text Solution

    |

  4. If y=xlog"{"x/((a+b x))"]" , then show that x^3(d^2y)/(dx^2)=(x(dy)/(d...

    Text Solution

    |

  5. Differentiate sin^(-1){(2^(x+1). 3^x)/(1+(36)^x)}"w i t hr e s p e...

    Text Solution

    |

  6. If sqrt(1-x^6)+sqrt(1-x^6)=a(x^3-y^3), then prove that (dy)/(dx)=(x^2)...

    Text Solution

    |

  7. If f(x)=sqrt(x^2+1),\ \ g(x)=(x+1)/(x^2+1) and h(x)=2x-3 , then find f...

    Text Solution

    |

  8. If x=s e ctheta-costhetaa n dy=sec^ntheta-cos^ntheta,p rov et h a t ...

    Text Solution

    |

  9. If x^(y)+y^(x)+x^(x)=m^(n)." then find the value of "(dy)/(dx).

    Text Solution

    |

  10. If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(...

    Text Solution

    |

  11. If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin ...

    Text Solution

    |

  12. If x^(2)/a^(2)+y^(2)/b^(2)=1" then show that "(d^(2)y)/(dx^(2))=-b^(4)...

    Text Solution

    |

  13. Verify Rolle's theorem for the function f(x)=e^(x) sin 2x [0, pi/2]

    Text Solution

    |

  14. Verify Lagranges mean value theorem for function f(x)=sqrt(x^2-4) o...

    Text Solution

    |

  15. If Rolle's theorem holds for the function f(x) = x^(3) + bx^(2) + ax +...

    Text Solution

    |

  16. If y={x+sqrt(x^2+1)}^m , show that (x^2+1)y2+x y1-m^2\ y=0

    Text Solution

    |

  17. Differentiate sin^(-1) [(3x+(4sqrt(1-x^(2))))/(5)] w.r.t.x.

    Text Solution

    |

  18. If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

    Text Solution

    |

  19. If f:[-5,5]vecR is differentiable function and iff^(prime)(x) does not...

    Text Solution

    |

  20. If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y2+xy1 is equal to

    Text Solution

    |