Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines
`vecr=(1-lambda)hati+(lambda-2)hatj+(3-2lambda)hatk ,vecr=(mu+1)+(2mu-1)hatj-(2mu+1)hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines in vector form, we can follow these steps: ### Step 1: Write the lines in general form The two lines are given as: 1. \(\vec{r_1} = (1 - \lambda) \hat{i} + (\lambda - 2) \hat{j} + (3 - 2\lambda) \hat{k}\) 2. \(\vec{r_2} = (\mu + 1) \hat{i} + (2\mu - 1) \hat{j} - (2\mu + 1) \hat{k}\) We can express these lines in the form: - Line 1: \(\vec{r_1} = \vec{a_1} + \lambda \vec{b_1}\) - Line 2: \(\vec{r_2} = \vec{a_2} + \mu \vec{b_2}\) Where: - \(\vec{a_1} = \hat{i} - 2\hat{j} + 3\hat{k}\), \(\vec{b_1} = -\hat{i} + \hat{j} - 2\hat{k}\) - \(\vec{a_2} = \hat{i} - \hat{j} - \hat{k}\), \(\vec{b_2} = \hat{i} + 2\hat{j} - 2\hat{k}\) ### Step 2: Calculate the cross product of the direction vectors Next, we need to find the cross product \(\vec{b_1} \times \vec{b_2}\). \[ \vec{b_1} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}, \quad \vec{b_2} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \] The cross product can be calculated using the determinant: \[ \vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2 \end{vmatrix} \] Calculating this determinant, we get: \[ \vec{b_1} \times \vec{b_2} = \hat{i} \begin{vmatrix} 1 & -2 \\ 2 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & -2 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating the determinants: \[ = \hat{i} (1 \cdot -2 - 2 \cdot -2) - \hat{j} (-1 \cdot -2 - 1 \cdot -2) + \hat{k} (-1 \cdot 2 - 1 \cdot 1) \] \[ = \hat{i} (-2 + 4) - \hat{j} (2 - 2) + \hat{k} (-2 - 1) \] \[ = 2\hat{i} + 0\hat{j} - 3\hat{k} = 2\hat{i} - 3\hat{k} \] ### Step 3: Calculate the magnitude of the cross product Now we find the magnitude of the cross product: \[ |\vec{b_1} \times \vec{b_2}| = \sqrt{(2)^2 + (0)^2 + (-3)^2} = \sqrt{4 + 0 + 9} = \sqrt{13} \] ### Step 4: Find \(\vec{a_1} - \vec{a_2}\) Now, we need to calculate \(\vec{a_1} - \vec{a_2}\): \[ \vec{a_1} - \vec{a_2} = (\hat{i} - 2\hat{j} + 3\hat{k}) - (\hat{i} - \hat{j} - \hat{k}) \] \[ = (1 - 1)\hat{i} + (-2 + 1)\hat{j} + (3 + 1)\hat{k} = 0\hat{i} - 1\hat{j} + 4\hat{k} = -\hat{j} + 4\hat{k} \] ### Step 5: Calculate the dot product Now we calculate the dot product \((\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_1} - \vec{a_2})\): \[ (2\hat{i} - 3\hat{k}) \cdot (0\hat{i} - 1\hat{j} + 4\hat{k}) = 2 \cdot 0 + (-3) \cdot 4 = -12 \] ### Step 6: Calculate the shortest distance Finally, we can find the shortest distance \(d\) using the formula: \[ d = \frac{|(\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_1} - \vec{a_2})|}{|\vec{b_1} \times \vec{b_2}|} \] Substituting the values we have: \[ d = \frac{|-12|}{\sqrt{13}} = \frac{12}{\sqrt{13}} \] Thus, the shortest distance between the two lines is: \[ \boxed{\frac{12}{\sqrt{13}}} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|19 Videos
  • RELATIONS AND FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|7 Videos
  • VECTORS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARKS QUESTIONS|35 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between lines barr=(lambda-1)hati+(lambda+1)hatj-(1+lambda)hatk and barr=(1-mu)hati+(2mu-1)hatj+(mu+2)hatk is

The Cartesian equation of the plane vecr=(1+lambda-mu)hati+(2-lambda)hatj+(3-2lambda+2mu)hatk is

The Cartesian equation of the plane vecr=(1+lamda-mu)hati+(2-lamda+mu)hatj+(3-2lamda+2mu)hatk is

Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

Find the shortest distance between the lines vecr =lambda (2hati+ 3hatj+4hatk) and vecr=(hati-hatj)+t(2hati-3hatj+4hatk)

Find the shortest distance between the lines vecr = hati+ hatj+hatk+lambda(3hati-hatj) and vecr=4hati-hatk+mu(2hati+3hatk)

Find the shortest distance between the following lines : (i) vecr=4hati-hatj+lambda(hati+2hatj-3hatk) and vecr=hati-hatj+2hatk+mu(2hati+4hatj-5hatk) (ii) vecr=-hati+hatj-hatk+lambda(hati+hatj-hatk) and vecr=hati-hatj+2hatk+mu(-hati+2hatj+hatk) (iii) (x-1)/(-1) = (y+2)/(1) = (z-3)/(-2) and (x-1)/(1) = (y+1)/(2) = (z+1)/(-2) (iv) (x-1)/(2) = (y-2)/(3) = (z-3)/(4) and (x-2)/(3) = (y-3)/(4) = (z-5)/(5) (v) vecr = veci+2hatj+3hatk+lambda(hati-hatj+hatk) and vecr = 2hati-hatj-hatk+mu(-hati+hatj-hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Find the shortest distance between the lines vecr=(hati+2hatj+hatk)+lamda(2hati+hatj+2hatk) and vecr=2hati-hatj-hatk+mu(2hati+hatj+2hatk) .

Find the shortest distance between lines vecr = 6hati+2hatj+2hatk+lambda(hati-2hatj+2hatk) and vecr = -4hati-hatk +mu(3hati-2hatj-2hatk) .