Home
Class 11
MATHS
If (x^(2))/(x-2)>0 then xin...

If `(x^(2))/(x-2)>0` then `xin`__________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{x^2}{x-2} > 0\), we will follow these steps: ### Step 1: Identify the critical points The expression \(\frac{x^2}{x-2}\) will be positive when both the numerator and denominator have the same sign (both positive or both negative). 1. **Numerator**: \(x^2 = 0\) gives the critical point \(x = 0\). 2. **Denominator**: \(x - 2 = 0\) gives the critical point \(x = 2\). ### Step 2: Determine the intervals The critical points divide the number line into intervals. We will analyze the sign of the expression in the following intervals: - \( (-\infty, 0) \) - \( (0, 2) \) - \( (2, \infty) \) ### Step 3: Test each interval We will choose a test point from each interval to determine the sign of \(\frac{x^2}{x-2}\). 1. **Interval \( (-\infty, 0) \)**: Choose \(x = -1\) \[ \frac{(-1)^2}{-1 - 2} = \frac{1}{-3} < 0 \quad \text{(negative)} \] 2. **Interval \( (0, 2) \)**: Choose \(x = 1\) \[ \frac{1^2}{1 - 2} = \frac{1}{-1} < 0 \quad \text{(negative)} \] 3. **Interval \( (2, \infty) \)**: Choose \(x = 3\) \[ \frac{3^2}{3 - 2} = \frac{9}{1} > 0 \quad \text{(positive)} \] ### Step 4: Combine the results From our testing: - The expression is negative in the intervals \((- \infty, 0)\) and \((0, 2)\). - The expression is positive in the interval \((2, \infty)\). ### Step 5: Write the solution Since we are looking for where the expression is greater than zero, the solution is: \[ x \in (2, \infty) \] ### Final Answer Thus, \(x \in (2, \infty)\). ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(MCQ)|9 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(True // False)|4 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos
  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos

Similar Questions

Explore conceptually related problems

(|x-2|)/(x-2)>0

If x^(2)le4 , xin ___________

If 3x + 17le 2 (1 - x) , then xin ________________

If |x|>5, then then xin _____________

If f(x)={(x^(2))/(|x|),x!=0,0,x=0 then

(2)/(x^(2))-(5)/(x)+2=0x!=0

If a!=0 then complete set of solution of (x^(2)-2x+2^(|x|))/(x^(2)-a^(2))>0 is

2x^2+2x+2=0

f(x)=x^(2)-2x+2,x in[0,2]