Home
Class 11
MATHS
If x^(2)le4,xin...

If `x^(2)le4`,`xin`___________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x^2 \leq 4 \), we will follow these steps: ### Step 1: Rewrite the inequality We start with the inequality: \[ x^2 \leq 4 \] ### Step 2: Move all terms to one side We can rewrite the inequality as: \[ x^2 - 4 \leq 0 \] ### Step 3: Factor the expression Next, we factor the left-hand side: \[ (x - 2)(x + 2) \leq 0 \] ### Step 4: Find the critical points The critical points occur when each factor is equal to zero: 1. \( x - 2 = 0 \) → \( x = 2 \) 2. \( x + 2 = 0 \) → \( x = -2 \) So, the critical points are \( x = -2 \) and \( x = 2 \). ### Step 5: Test intervals We will test the intervals defined by the critical points: 1. \( (-\infty, -2) \) 2. \( (-2, 2) \) 3. \( (2, \infty) \) - **Interval 1: \( (-\infty, -2) \)** Choose \( x = -3 \): \[ (-3 - 2)(-3 + 2) = (-5)(-1) = 5 \quad (\text{not } \leq 0) \] - **Interval 2: \( (-2, 2) \)** Choose \( x = 0 \): \[ (0 - 2)(0 + 2) = (-2)(2) = -4 \quad (\text{is } \leq 0) \] - **Interval 3: \( (2, \infty) \)** Choose \( x = 3 \): \[ (3 - 2)(3 + 2) = (1)(5) = 5 \quad (\text{not } \leq 0) \] ### Step 6: Include the critical points Since the inequality is \( \leq 0 \), we include the critical points where the expression equals zero: - At \( x = -2 \): \[ (-2 - 2)(-2 + 2) = (0)(-4) = 0 \quad (\text{is } = 0) \] - At \( x = 2 \): \[ (2 - 2)(2 + 2) = (0)(4) = 0 \quad (\text{is } = 0) \] ### Final Solution Thus, the solution to the inequality \( x^2 \leq 4 \) is: \[ x \in [-2, 2] \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(MCQ)|9 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(True // False)|4 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS (Solve to the following system of inequalities and represent solution on number line:)|3 Videos
  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos

Similar Questions

Explore conceptually related problems

If 3x + 17le 2 (1 - x) , then xin ________________

If (x^(2))/(x-2)>0 then xin __________

If |x|>5, then then xin _____________

The area of the region bounded by the curves {(x,y) : x^(2) + y^(2) le 4 , 2 le x + y } is __________ .

if A={(x,y):x^(2)+y^(2)le1,x,yinR] and B={(x,y):x^(2)+y^(2)le x^(2)+y^(2)le 4, x,yin R] then

If 4 le x le 9 , then

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

The set {(x, y)|3 le x^(2) + y^(2) le 4} is not a convex set.