Home
Class 11
MATHS
(x-3)/(x-5) > 0 then x belongs to -...

 `(x-3)/(x-5) > 0` then x belongs to -

A

(-infty,3)cup(5,infty)`

B

(-infty,-3)cup(-5,infty)`

C

(-infty,3)cup(5,infty)`

D

(3,5)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((x-3)/(x-5) > 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator and denominator are equal to zero. 1. Set the numerator \(x - 3 = 0\) which gives us: \[ x = 3 \] 2. Set the denominator \(x - 5 = 0\) which gives us: \[ x = 5 \] ### Step 2: Determine the intervals The critical points divide the number line into intervals. The intervals are: - \((-\infty, 3)\) - \((3, 5)\) - \((5, \infty)\) ### Step 3: Test each interval We will test a point from each interval to determine where the inequality holds true. 1. **Interval \((-\infty, 3)\)**: Choose \(x = 0\) \[ \frac{0 - 3}{0 - 5} = \frac{-3}{-5} = \frac{3}{5} > 0 \quad \text{(True)} \] 2. **Interval \((3, 5)\)**: Choose \(x = 4\) \[ \frac{4 - 3}{4 - 5} = \frac{1}{-1} = -1 < 0 \quad \text{(False)} \] 3. **Interval \((5, \infty)\)**: Choose \(x = 6\) \[ \frac{6 - 3}{6 - 5} = \frac{3}{1} = 3 > 0 \quad \text{(True)} \] ### Step 4: Combine the results From our tests, the inequality \((x-3)/(x-5) > 0\) holds true in the intervals \((-\infty, 3)\) and \((5, \infty)\). ### Step 5: Write the solution set Since the inequality does not include equality (i.e., it is strictly greater than), we do not include the critical points \(x = 3\) and \(x = 5\). Thus, the solution set is: \[ x \in (-\infty, 3) \cup (5, \infty) \] ---
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS(True // False)|4 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise SHORT ANSWER TYPE QUESTIONS|23 Videos
  • LINEAR INEQUALITIES

    CBSE COMPLEMENTARY MATERIAL|Exercise VERY SHORT ANSWER TYPE QUESTIONS (Fill in the blanks )|5 Videos
  • LIMITS AND DERIVATIVES

    CBSE COMPLEMENTARY MATERIAL|Exercise LONG ANSWER TYPE QUESTIONS|33 Videos
  • MATHEMATICAL REASONING

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-B SHORT ANSWER TYPE QUESTIONS|5 Videos

Similar Questions

Explore conceptually related problems

If log_(4.5)((2x-8)/(x-2))<0, then x belong to

|x+(2)/(x)|<3 then x belongs to

If ((Inx)^(2)-3Inx+3)/(In x-1)<1, then x belongs to :

||x-2|-3|>1 then x belongs to

||x-2|-3}>1 then x belongs to

2^(x)xx3^(2x)=100 then x belongs to

(x+1)(x+2)(x+3)(x^(2)4x+8)(x-2)=0, then x belongs to

if ((ln x)^(2)-3ln x+3)/(ln x-1)<1 then x belongs to

If (3(x-2))/(5)gt=(5(2-x))/(3) , then x belongs to the interval

If |(x^(2) +6)/(5x)| ge 1 , then x belongs to