Home
Class 12
MATHS
Evaluate : int(0)^(pi//2)Log ((5+3cos...

Evaluate :
`int_(0)^(pi//2)Log ((5+3cosx)/(5+3sin x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \cos x}{5 + 3 \sin x} \right) dx, \] we can use a symmetry property of definite integrals. ### Step 1: Define the integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \cos x}{5 + 3 \sin x} \right) dx. \] ### Step 2: Use the property of integrals Using the property of integrals, we can express \( I \) in terms of \( \pi/2 - x \): \[ I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \cos\left(\frac{\pi}{2} - x\right)}{5 + 3 \sin\left(\frac{\pi}{2} - x\right)} \right) dx. \] ### Step 3: Simplify the expression Using the trigonometric identities \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \) and \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \sin x}{5 + 3 \cos x} \right) dx. \] ### Step 4: Add the two expressions for \( I \) Now, we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \cos x}{5 + 3 \sin x} \right) dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{5 + 3 \sin x}{5 + 3 \cos x} \right) dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \log \left( \frac{5 + 3 \cos x}{5 + 3 \sin x} \right) + \log \left( \frac{5 + 3 \sin x}{5 + 3 \cos x} \right) \right) dx. \] ### Step 5: Combine the logarithms Using the property of logarithms \( \log a + \log b = \log(ab) \), we can combine the logarithms: \[ 2I = \int_{0}^{\frac{\pi}{2}} \log \left( \frac{(5 + 3 \cos x)(5 + 3 \sin x)}{(5 + 3 \sin x)(5 + 3 \cos x)} \right) dx. \] ### Step 6: Simplify the integral The expression simplifies to: \[ 2I = \int_{0}^{\frac{\pi}{2}} \log(1) \, dx = \int_{0}^{\frac{\pi}{2}} 0 \, dx = 0. \] ### Step 7: Solve for \( I \) Thus, we have: \[ 2I = 0 \implies I = 0. \] ### Final Result The value of the integral is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (cosx)/(3cos x+ sin x ) dx=

Evaluate : int_(0)^(pi//2)(cosx)/((3cosx+sinx))dx .

int_(0)^(pi//2) (cosx)/((4+sin x)(3+sin x) ) dx =

Evaluate : int_(0)^(pi//6) (cosx)/(3+4 sin x)dx

Evaluate: int_(0)^((pi)/(2))log((4+3sin x)/(4+3cos x))dx

int_(0)^(pi//2) (cosx )/ (1+sin^(2)x)dx=

int_(pi//4)^(pi//2)((1-3cosx))/(sin^(2)x)dx

The value of int_(0)^((pi)/(2))log[(3+5cos x)/(3+5sin x)]dx is