Home
Class 12
MATHS
Evaluate : int (a^(x)+b^(x))/(c^(x))d...

Evaluate :
`int (a^(x)+b^(x))/(c^(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{a^x + b^x}{c^x} \, dx, \] we can start by rewriting the integrand. ### Step 1: Rewrite the integrand We can express the integrand as: \[ \frac{a^x + b^x}{c^x} = \frac{a^x}{c^x} + \frac{b^x}{c^x} = \left(\frac{a}{c}\right)^x + \left(\frac{b}{c}\right)^x. \] ### Step 2: Split the integral Now, we can split the integral into two separate integrals: \[ \int \left(\left(\frac{a}{c}\right)^x + \left(\frac{b}{c}\right)^x\right) \, dx = \int \left(\frac{a}{c}\right)^x \, dx + \int \left(\frac{b}{c}\right)^x \, dx. \] ### Step 3: Evaluate each integral We know that the integral of \(k^x\) is given by: \[ \int k^x \, dx = \frac{k^x}{\ln k} + C. \] Applying this formula to our integrals: 1. For the first integral, where \(k = \frac{a}{c}\): \[ \int \left(\frac{a}{c}\right)^x \, dx = \frac{\left(\frac{a}{c}\right)^x}{\ln\left(\frac{a}{c}\right)} + C_1. \] 2. For the second integral, where \(k = \frac{b}{c}\): \[ \int \left(\frac{b}{c}\right)^x \, dx = \frac{\left(\frac{b}{c}\right)^x}{\ln\left(\frac{b}{c}\right)} + C_2. \] ### Step 4: Combine the results Now, we can combine the results of both integrals: \[ \int \frac{a^x + b^x}{c^x} \, dx = \frac{\left(\frac{a}{c}\right)^x}{\ln\left(\frac{a}{c}\right)} + \frac{\left(\frac{b}{c}\right)^x}{\ln\left(\frac{b}{c}\right)} + C, \] where \(C = C_1 + C_2\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{a^x + b^x}{c^x} \, dx = \frac{a^x}{c^x \ln\left(\frac{a}{c}\right)} + \frac{b^x}{c^x \ln\left(\frac{b}{c}\right)} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise FOUR MARK QUESTIONS|82 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • INTEGRALS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|20 Videos
  • DIFFERENTIAL EQUATIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise SIX MARK QUESTIONS|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CBSE COMPLEMENTARY MATERIAL|Exercise 4 MARK QUESTIONS|31 Videos

Similar Questions

Explore conceptually related problems

Evaluate :int(a)/(a^(x)b^(x))dx

Evaluate: int(1)/(a^(x)b^(x))dx

Evaluate: (i) int(2^(x)+3^(x))/(5^(x))dx (ii) int((a^(x)+b^(x))^(2))/(a^(x)b^(x))dx

int(a^(x)-b^(x))dx=

Evaluate int(a^(x))/(b^(x))dx

Evaluate: int_(a)^(b)x^(3)dx

Evaluate : int((x)/(a)+(b)/(x))dx

Evaluate: int (x/a +b/x)dx

Evaluate: int(a)/(b+ce^(x))dx

int_(0)^(oo)(a^(x)-b^(x))/(c^(x))dx =